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Abstract

This document describes the functional programming language Frege and its implemen-
tation for the Java virtual machine. Commonplace features of Frege are type inference,
lazy evaluation, modularization and separate compile-ability, algebraic data types and
type classes, pattern matching and list comprehension.

Distinctive features are, first, that the type system supports higher ranked polymorphic
types, and, second, that Frege code is compiled to Java. This allows for maximal
interoperability with existing Java software. Any Java class may be used as an abstract
data type, Java functions and methods may be called from Frege functions and vice
versa.

Despite this interoperability feature Frege is a pure functional language as long as impure
Java functions are declared accordingly.

What is or who was Frege?

Friedrich Ludwig Gottlob Frege was a German mathematician, who, in the second half
of the 19th century tried to establish the foundation of mathematics in pure logic. Al-
though this attempt failed in the very moment when he was about to publish his book
Grundgesetze der Arithmetik, he is nevertheless recognized as the father of modern logic
among philosophers and mathematicians.

In his essay Funktion und Begriff [1] Frege introduces a function that takes another
function as argument and remarks:

Eine solche Funktion ist offenbar grundverschieden von den bisher betrachteten;
denn als ihr Argument kann nur eine Funktion auftreten. Wie nun Funktionen
von Gegenständen grundverschieden sind, so sind auch Funktionen, deren Argu-
mente Funktionen sind und sein müssen, grundverschieden von Funktionen, deren
Argumente Gegenstände sind und nichts anderes sein können. Diese nenne ich
Funktionen erster, jene Funktionen zweiter Stufe.

And, as if this was not confusing enough, he continues later:

Man muß bei den Funktionen zweiter Stufe mit einem Argumente unterscheiden, je

nachden als dies Argument eine Funktion mit einem oder eine solche mit zwei Argu-

menten erscheinen kann; denn eine Funktion mit einem Argumente ist so wesentlich

verschieden von einer solchen mit zwei Argumenten, daß die eine nicht an eben der

Stelle als Argument auftreten kann, wo die andere es kann.

In my opinion, this makes Frege a very good name for a functional programming language
with a strong type system.
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Chapter 1

Introduction

Frege is a functional language influenced by Haskell with the following features:

• haskell (www.haskell.org) like syntax

• type safety through a strong type system with type inference. The type inference
mechanism is based on and derived from the paper Practical type inference for
arbitrary-rank types by Simon Peyton Jones [4], to whom I am greatly indebted.

Type inference by the compiler means that it is almost never necessary to declare
the type of variables, functions or expressions.

• lazy evaluation: expressions are only evaluated when they are needed.

• modularization through packages like in Java

• rich type system with basic types, functions, regular expressions, lists, tuples and
user defined algebraic types. In addition, types from the host language may be used
as abstract types.

• user definable operators

• type classes (interfaces) and instances (types that implement interfaces) provide a
form of controlled polymorphism. For example, a sorting function may require that
the values to be sorted must support comparisons. This is also a clean and type
safe way to overload functions and operators.

• pattern matching with guards.

• interface to Java. In fact, Frege is compiled to Java and all primitive types and
operations are borrowed from Java.

If you know Haskell or another functional language, Frege will be easy to learn for
you. This document contains boxes that highlight differences to Haskell that look like
this:

6



CHAPTER 1. INTRODUCTION 7

Difference to Haskell 98/2010: Look for paragraphs like this to learn what is
different in Frege.

Frege is

not object oriented

no replacement for already established functional programming languages like Haskell,
Scala, F# and others. Nevertheless, Frege may be interesting

• for Java programmers that are interested in pure functional programming.

• as a substitute for Haskell when a functional programmer needs to do work
in or for the Java platform.

1.1 Differences to Haskell 2010

Note: Readers not familiar with Haskell may want to skip this section.

Module system Frege’s module system is based on that of Java. A Frege program
is is a collection of packages. Each Frege source file defines exactly one package
and compiles to a Java source file with the definition of a public class.

Types Numeric literals are not overloaded in Frege.

Strings Strings are primitive types in Frege and are implemented as Java’s java.lang.String
type. Conversions to and from lists of characters are provided.

Regex Another primitive Frege type is Regex. It makes powerful and fast working
functions on strings possible. A Regex can also be used as pattern for string argu-
ments.

What Frege has and Haskell 98 does not have

• support for regular expressions in the language

• records with field labels that do not pollute the name space

• definitions that live in the scope of a data type

• pattern guards as proposed by Simon Peyton Jones in [8] and meanwhile imple-
mented in Haskell 2010.

• seamless access to any Java class and its public members and methods
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1.2 Program structure

In this section, we introduce the language structure and at the same time give an outline
of the organization of this document.

1. At the topmost level, a Frege program is a set of packages, described in chapter 5.

2. The top level of a package consists of a collection of declarations, of which there are
several kinds, all described in chapter 4. Declarations define things such as ordinary
values and functions, data types, type classes, fixity information.

3. At the next lower level are expressions, described in chapter 3.

4. At the bottom level is the lexical structure, described in chapter 2.

The last section describes the native interface (chapter 8).

Examples of Frege program fragments in running text are given in typewriter font.
Sometimes examples are given in a form of colored pseudo code, with indexed identifiers
in italics as in if e1 then e2 else e3, where the italicized names are supposed to be
mnemonic, such as e for expressions, p for patterns, etc.



Chapter 2

Lexical Structure

2.1 Notational Conventions

In this and the subsequent chapters, subsets of the Frege grammar are given in running
text. The complete grammar is the set of rules that is the union of all those subsets.

A grammar rule defines a nonterminal symbol as a sequence composed of terminal symbols,

nonterminal symbols or subrules indicating that the enclosed sequence [ is optional ] or
may occur {zero or more} times. Nonterminal symbols and variable terminal symbols
are written in italics, constant terminals in bold typewriter font. The definition of a
nonterminal starts in the left margin and may consist of alternative rules. Alternatives
are separated by a line break, some indent and a vertical bar.

In this section particularly, the lexical syntax of terminal symbols of the grammar will be
defined by regular expression. We use regular expressions as defined in the documentation
of class java.util.regex.Pattern in [9]. Regular expression will appear in coloured
typewriter font like this \s?.
In order to make things more readable, sometimes the name of a terminal symbol is used
in a regular expression. The meaning is here to replace the terminal symbol with the
regular expression defining it. For example:

digits :
\d+

float :
digits(\.digits)?

This is the same as:
float :

\d+(\.\d+)?

Likewise, instead of foo|bar we sometimes write foo|bar.
All regular expressions are to be understood to be anchored at the start of the yet unpro-
cessed portion of the program text.

9
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Some symbols like parentheses, separators and so on stand for themselves and are specified
verbatim each time they occur in the grammar. To distinguish verbatim symbols like <- ,

; :: etc. from meta-syntactical symbols such as | and [ .. ] and from regular expressions,
we write them in a different colour.

Frege uses the Unicode character set.

Compilers will support program text stored in files with encodings that are supported by
the Java platform. The standard encoding is UTF8. For detailed information consult
the Java API documentation [9].

While it is possible to compose names and operator symbols from valid Unicode symbols,
one should keep in mind that extensive use of this feature will make the program text
difficult, if not impossible, to understand for members of different cultural background.

2.2 Lexical program structure

program:

{line}
line:

{whitespace token} whitespace
whitespace:

\s*
token:

varid |conid |keyword |qualifier |parentheses |specialsym
|lexop |literal

A program is made up of lines. Source code is broken into lines before tokenization by
appropriate input reading functions that will recognize and strip line separator characters
typical for the underlying operating system.

With the exception of documentation text there is no token that would extend over more
than one line.

Each line contains zero or more tokens separated by whitespace. Still more whitespace
can occur before the first token or after the last token.

Note that the definition of whitespace allows for the empty string of whitespace characters.
Consequently, tokens may appear not to be separated at all.

The possibility of zero length whitespace does not mean that whitespace may be dismissed
altogether. On the contrary, whenever two tokens appear in sequence where a non empty
prefix of the second token might also be a valid suffix of the first one, nonempty whites-
pace is required to allow for unambiguous tokenization. In other words, the tokenization
algorithm will recognize the longest prefix of the remaining characters on the current line
that form a valid token.

Consider the following example:
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Example:
a+2
a2
a 2
a
2

There are 3 tokens in the first line and one token in the second line. Since a digit is a
valid suffix of an identifier, a space must occur between a and 2 to obtain two tokens,
as shown on the third line. Another possibility to separate the tokens would be to write
them on different lines, as shown in the last two lines.

2.3 Comments

Comments can appear everywhere whitespace can.

comment :
linecomment | blockcomment

linecomment :
---?.* (line comment extends to end of line)

blockcomment :
(?s)\{--?(.|blockcomment)*-\}

Note that the character sequence making up a block comment may extend over multiple
lines 1. Because block comments do nest, any occurrence of -} or {- within the commented
text will interfere with the nesting.

Difference to Haskell 98/2010:
A user defined operator (see section 2.5) must not start with the comment introduc-
ing characters {- or --.

2.3.1 Documentation Text

Block comments starting with {-- and line comments starting with --- are treated as
documentation text. Unlike an ordinary comment, a documentation text is a token and
hence is not only lexically but also syntactically relevant.

There are only certain places where documentation text may appear, as will be detailed
in this section. In order not to complicate matters, subsequent sections will not mention
documentation text anymore.

A documentation text may appear:

1This is the only exception to the rule that no token crosses line boundaries.
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1. before the package keyword that starts a package. This will be the documentation
for the package.

2. in place of a top level declaration or a declaration in the where clause of a data, class
or instance declaration. It can also appear immediately before such a declaration.
This will be the documentation for the subsequent declared item.

3. immediately either before or after a constructor in a data declaration. This will be
the documentation for that constructor.

4. immediately before or after a constructor field. In the latter case, no comma must
be written before the next constructor field.

For convenience, in cases 1 and 2 a sequence of documentation comments optionally
separated by semicolon can be written. The text of the documentation comments will be
concatenated with an interleaving paragraph break.

Example:

--- this package is documented

{-- second paragraph of package doc -}
{-- third paragraph of package doc-}
package D where

--- this is the list of Fibonacci numbers

fib = 1:1:zipWith (+) fib (tail fib)

--- document type D

data D =

--- document constructor C

C { name :: String --- document name, no comma here

{-- document age -}
age :: Int }

| N --- document constructor N

Documentation text will be copied verbatim and it will be available in the binary results
of compilation (e.g. Java class files), so that documentation processing tools can access
it to generate documentation in various formats.

2.4 Identifiers and Keywords

qualifier :
\p{Lu}(\d| |\p{L})*\.

varid :
\p{Ll}(\d| |\p{L})*’*
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conid :
\p{Lu}(\d| |\p{L})*

qvarid :

qualifier qualifier varid | qualifier varid | varid
qconid :

qualifier qualifier conid | qualifier conid | conid

These rather complicated regular expressions deserve some further explanation.

We distinguish lexically between two classes of identifiers. Names for functions, values
and local variables are varids and start with a lowercase letter. Names that start with
an uppercase letter (conids) stand for value constructors, type constructors, type classes,
type aliases or name spaces.

Sometimes it is necessary to name an item that is defined in another package or in the
scope of a type or type class. Thus we need qualified names, defined here as qvarid and
qconid. They are formed by writing one or two qualifiers before a varid or conid.

A qualifier consists of an identifier starting with an uppercase letter and an immediately
following dot. The identifier may denote name spaces, types or type classes. A qualifier
like Foo. is a single token and thus may not contain spaces.

According to this, the syntax allows reference to items in the following ways:

N.T.v N.T.C
T.v T.C N.v N.C N.T
v C T

where N would be a name space, T a type or class name, C a data constructor name and
v the name of a function or pattern binding.

There are rare cases where it is possible to confuse the dots in the qualifiers with the
special operator . explained later, an example can be found here. Fortunately, such
constructs can be disambiguated with spaces or parentheses.

Note: Unlike in other languages, a Frege identifier cannot start with an underscore.

Name Resolution and Scope

Names appearing in expressions and types are resolved by the following rules, where N ,
T and C stand for conids and v for varids:

Names of the form v: every enclosing lexical scope provided by a let, lambda expres-
sion or case alternative is searched in turn for the name. If it is found, then it
refers to an item defined in a let expression or a (part of a) pattern in a lambda
expression or case alternative. Otherwise, it must be a globally visible item. If v
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appears in the scope of a data definition, class definition or instance definition and
there is a variable or function binding with the name v then it is resolved to mean
this binding except when this is an implementation of a type class operation which
has a simple name in the current package. In that case, the name resolves to that
class operation. Otherwise, it must be a global function or variable binding or a
class member.

Names of the form T or C: T may appear in type signatures, where it denotes a type
constructor, type name or class name, either an imported one or one that is declared
in the current package. In expressions and patterns, C denotes a value constructor.

Names of the form N .T or N .C: N must be a name space denoting an imported
package, a data type or a class. T must be a class name, type name or C must
be a data constructor from this name space. While it is possible, that a type and a
data constructor have the same name this does not introduce ambiguities because
syntactically either a type name T or a data constructor C can be meant, but not
both.

It is also possible that a type name and a name space of an imported package
have the same name. In this case, only the name space of the imported package is
searched. If one needs to access C in the name space of the type N .N one needs to
write a qualified name of the form N .N .C.

Names of the form N .v or T .v: N must be name space denoting an imported package
or T must denote a data type, type alias or a class. v is the name of a function or
pattern binding in N or T . Again, if there is a name space N and a type T and
N = T , then only N is searched.

Names of the form N .T .C or N .T .v: Fully qualified names denote a function or pat-
tern binding or a data constructor belonging to type or class T from name space
N .

Keywords

Some character sequences that would otherwise be matched by rule varid are keywords
and will be recognized by the scanner as distinct terminal symbols.

abstract: abstract
case: case
class: class|interface
data: data
derive: derive
do: do
else: else
false: false
forall: forall
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if: if
import: import
in: in
infix: infix
infixl: infixl
infixr: infixr
instance: instance
let: let
mutable: mutable
native: native
of: of
package: package|module
private: private
protected: protected
pure: pure
public: public
then: then
throws: throws
true: true
type: type
where: where

The words pure andmutable are only recognized as keywords when immediately followed
by the native keyword, otherwise they are regarded as ordinary varid.

2.5 Operators

The Frege language permits user defined infix operators. Valid infix operators are
sequences of either letters or non word characters that obey the following additional
rules:

1. Certain sequences of 1 or 2 non word characters form terminal symbols with spe-
cial syntactic meaning (rule specialsym). These symbols can not be used as infix
operators.

2. Operator symbols may not contain characters used as quotation marks (rule quotechar).

3. Operator symbols may not contain parentheses, brackets or braces (rule parenthe-
ses).

An infix operator denotes a function or a value constructor.

Operators may be introduced with a top level infix declaration (rule fixity).
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fixity :

infix precedence lexop { lexop }
infix :

infix | infixl | infixr
precedence:

[123456789] | 1[0123456]
symop:

\W+
wordop:

\w+
infixop:

symop | wordop
lexop:

‘infixop‘ | symop
specialsym:

:: | -> | <- | => | \| | = | - | ! | ? | , | ; | \. | \\ |
parentheses :

\( | \) | \[ | \] | \{ | \}
quotechar :

["’#‘]

The infix declaration has two purposes:

• It makes the lexical analyzer recognize operator symbols made up of symbol char-
acters (rule symop). The lexical analyzer recognizes only operator symbols intro-
duced in an infix declaration and operator symbols from imported packages (see
also subsection 2.5.2).

• It causes the parser to interpret expressions differently based on the operators as-
sociativity (left, right or none) and precedence. Operators with higher precedence
bind their operands before operators with lower precedence, so the precedence is
to be taken as an indication of binding power. Precedences range from 1 (weakest
binding) to 16 (tightest binding).

See also the syntax of binary expressions in section 3.5, the example in Figure 2.1 and
the table of predefined operators in Figure 3.3.

2.5.1 Rules for using backquotes

Every sequence of characters forming a valid operator symbol that is enclosed in back-
quotes will be recognized as an operator token. If the operator was not previously intro-
duced through a fixity declaration it will be assumed that it is non-associative and has a
precedence of 16.
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infix 12 ‘==‘ ‘!=‘ -- non associative

infixr 13 ‘++‘ -- right associative

infixl 14 div -- left associative word operators,

infixl 14 ‘mod‘ -- backticks don’t matter here

infixr 4 ‘:‘ -- right associative

infixr 16 ‘**‘ -- ditto, but binds tighter than ‘:‘

a == b != c -- syntax error, set parentheses explicitly

a ++ b ++ c == d -- (a ++ (b ++ c)) == d

a ** b ** c : d : e -- (a ** (b ** c)) : (d : e)

a ‘mod‘ b -- mod a b

f div 2 -- div is not used as operator here

Figure 2.1: Parsing of expressions containing operators

As outlined above, a symop not enclosed in backquotes can only be recognized when there
is a fixity declaration or an import that introduces it. Hence, to introduce a fresh symop
one must write it within backquotes in the fixity declaration itself.

For wordops matters are different. Like in Haskell it is required that one always ex-
plicitly indicates when one wants to use an identifier as operator. Thus, wordops must
always be quoted with backquotes when they are in infix position. However, in the infix
declaration all that matters is to announce the character sequence an operator is made
of. Thus, backticks are not strictly needed when introducing word operators.

2.5.2 Imported operators

A package import (see also section 5.3) makes all operator symbols introduced in the
imported package known to the lexical analyzer. Yet, depending on the import statement,
the corresponding function may not be in scope. To access them nevertheless, it is possible
to qualify operators:

qlexop:

qualifier lexop | qualifier qualifier lexop

Difference to Haskell 98/2010:

• fixity is a lexical and syntactical property of certain operator symbols

• (consequently) fixity declarations are permitted at top level only

• an operator whose fixity was not declared is taken to be non-associative and
to have precedence 16 (tightest biding)

• to use an operator op from name space M one writes M.‘op‘
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2.6 Unary operators

There are two symbols that may be used as unary operators:

unop:

! | ?

Unary operators can not be qualified. It is strongly discouraged to use them as names for
own functions.

The unary opeartor ! is the boolean negation function; in patterns it has special meaning
that signals strict patterns.

The unary operator ? is currently unassigned and reserved for future use.

2.7 Literals

Literals are textual representations of values of certain simple types. All literals are valid
expressions as well as patterns.

literal :
boolliteral | numericliteral

| charliteral | stringliteral | regexliteral
numericliteral :

integerliteral | floatliteral

Difference to Haskell 98/2010: Literal syntax is adopted from Java. Every literal
determines a fixed type.

2.7.1 Boolean Literals

The boolean values are represented by the keywords true and false. Boolean values are
of type Bool.

boolliteral :
true | false

2.7.2 Numeric Literals

The syntax of numeric literals follows closely that of Java, except that some exotic form
of floating point literals are not supported. In addition, there are literals for big integers.
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Furthermore, for all numeric literals, the syntax of the integral part has been slightly
extended: it is possible to separate trailing groups of 3 digits each with an underscore.
This enhances legibility greatly with big numbers.

Example: The literal for the long integer value fifty-two billion four hundred and
twenty-five million two hundred and fifty-four thousand five hundred and twenty-four
can be written 52 425 254 524L or 52425254524L.

Integer Literals

There are literals for values of 3 different integer types: Int, Long and Integer.

integerliteral :

intliteral | longliteral | bigintliteral
intliteral :

as defined in Java, see section 3.10.1 in [6]
longliteral :

as defined in Java, see section 3.10.1 in [6]
bigintliteral :

\d+( \d\d\d)*[nN]

Frege adopts the syntax for integer literals from Java. An integer literal that would
have type int in Java has type Int in Frege. An integer literal that would have type
long in Java has type Long in Frege.

In addition, a sequence of decimal digits followed by one of the letters n or N (think natural
number) is a literal of type Integer, the data type of integral numbers of arbitrary size.
Note that leading zeros do not indicate octal numbers as with the other integer literals.

Floating-Point Literals

There are literals for values of the Float and Double types. The syntax is a subset of
that for Java floating point literals as specified in section 3.10.2 of [6]. Not supported
are floating point literals that do not start with a digit and hexadecimal floating point
literals.

floatliteral :
as defined in Java, see section 3.10.2 in [6]
except hexadecimal notation and literals
that start with a decimal point

A literal that would have type float in Java has type Float in Frege. A literal that
would have type double in Java has type Double in Frege.
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2.7.3 Character and String Literals

Character Literals

Character literals are like char literals in Java and have type Char.

charliteral :
as defined in Java, see section 3.10.4 in [6]

Note: Since Frege does not preprocess its source texts, a character literal like
’\u89ab’ will not work.

String Literals

String literals are like String literals in Java and have type String.

stringliteral :
as defined in Java, see section 3.10.5 in [6]

Note: Java programmers: Please observe that the string concatenation operator is
++ in Frege

.

Literals for Regular Expressions

The Frege language supports regular expressions as a built in data type. Consequently
it is possibe to specify regular expressions literally. Such literals denote values of type
Regex unless they are not well formed by the rules of the regular expression language. In
the latter case, the compiler issues an error message and the program containing the ill
formed literal does not compile.

regexliteral :
(́\\́|[^\́])*́

A regular expression literal is enclosed in grave accent marks and is a sequence of 0 or
more characters that are not grave accent marks unless they are escaped with backslashes.

The regular expression language is the one implemented in the java.util.regex pack-
age. It is documented along with the class java.util.regex.Pattern in [9]. The only
difference is that the grave accent mark is a special character that signals the end of the
regular expression. If one wants to match a grave accent mark, one must write a backslash
followed by a grave accent mark in the regular expression.

Regular expression literals are compiled with the flags CANON EQ, UNICODE CASE and
UNICODE CHARACTER CLASS. The latter two may be reset with embedded flag expressions
(?-u) and (?-U), respectively.
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Note: A single backslash in a regex literal is the escape character for the regular
expression language. Thus, for instance, the literal \́bá means ”the regular expression
that matches the letter ’a’ after a word boundary” and not ”... that matches the
backspace character followed by the letter ’a’”.

It is also possible to construct a string that contains a pattern and compile that to a
pattern value. However, regular expression literals are superior compared to string literals
with pattern text

• because there is one level of backslash-interpretation less, thus one needs to write
only half the number of backslashes

• invalid regular expression literals are flagged at compile time, not when they are
about to be used

• regular expression literals will be replaced with references to read only pattern
values that are built at program startup time. Thus one can safely use regular
expression literals everywhere without performance penalty due to repeated pattern
compilation. This has the added benefit that one can immediately see what the
regular expression is and does not have to look it up somewhere else in the program
code.

The bottom line is: one should use regular expression literals whenever possible.

2.8 Layout

Frege permits the omission of the braces and semicolons by using layout to convey
the same information. This allows both layout-sensitive and layout-insensitive styles of
coding, which can be freely mixed within one program. 2 Because layout is not required,
Frege programs can be straightforwardly produced by other programs.

Informally stated, the braces and semicolons are inserted as follows. The layout (or
”offside”) rule takes effect whenever the open brace is omitted after the keyword where,
let, do, or of. When this happens, the indentation of the next lexeme (whether or
not on a new line) is remembered and the omitted open brace is inserted (the whitespace
preceding the lexeme may include comments). For each subsequent line, if it contains only
whitespace or is indented more, then the previous item is continued (nothing is inserted);
if it is indented the same amount, then a new item begins (a semicolon is inserted); and
if it is indented less, then the layout list ends (a close brace is inserted).

The layout rule matches only those open braces that it has inserted; an explicit open
brace must be matched by an explicit close brace. Within these explicit open braces, no
layout processing is performed for constructs outside the braces, even if a line is indented
to the left of an earlier implicit open brace.

2Though, experience with Haskell seems to show that literally all source code is written using layout.
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Difference to Haskell 98/2010: The token following a where, let, do or of

keyword must either be an opening brace or it must be more indented than the
current level, otherwise the layout algorithm will insert a closing brace which will
result in a syntax error. In other words, the token sequence {} will never be inserted.
The layout handling is a purely lexical matter, hence it is not possible to insert a
closing brace ”if an illegal lexeme is encountered at a point where a closing brace
would be legal”.
However, a closing brace is inserted before the keyword in regardless of the inden-
tation unless it is already preceded by a closing brace. Hence, one can still write let
expressions on a single line.



Chapter 3

Expressions

In this chapter, we describe the syntax and informal semantics of Frege expressions
and give translations into more basic expressions, where appropriate. Free variables and
constructors used in these translations refer to entities defined by the standard package
frege.Prelude.

3.1 Terms

term:
qvarid (variable)

| qconid (constructor)

| qconid { initfields } (value construction)

| literal

| (a single underscore)

| ( qlexop )

| ( qunop )

| section

| ( ) (unit constructor)

| tuple (see subsection 3.1.3)

| list (see subsection 3.1.4)

initfields :

initfield{, initfield}
initfield :

varid [ = expr ]

The most basic expressions are variables, value constructors and literals. Variables stand
for the values they are bound to, often these values are functions. Likewise, a value
constructor may stand for a value or for a function that constructs values depending on

23



CHAPTER 3. EXPRESSIONS 24

other values.

Constructors that were defined with field labels can be applied to a list of field initializa-
tions enclosed in braces. Exactly the field labels that belong to the constructor must be
specified. If the expression is omitted, the value of the variable currently in scope that
has the same name as the field is used (punning). The expression is translated to an
ordinary constructor application by reordering the expressions given for the fields so that
they appear in the same order as in the constructor definition.

Translation:
Con { · · ·, a, · · · } = Con { · · ·, a = a, · · · }
Con { a = xa, c = xc, b = xb } = (Con xc xb xa)

if the order of the fields in the
constructor was c, b, a

Difference to Haskell 98/2010: Values for all fields must be given, it is not allowed
to leave out fields.

Literals stand for the value they represent.

A single underscore is technically a variable, yet can only appear in pattern bindings.
There it signals that the corresponding part of a value is not bound.

Sometimes one needs to refer to a function whose name is an operator lexically. Any unary
or infix operator may be used as a variable or constructor by enclosing it in parentheses.
Another way to put this is to say that an operator enclosed in parentheses looses its
syntactic properties.

Translation:
(op) = the function defined by op, where op is an operator
e1 op e2 = (op) e1 e2, where op is a binary operator
f op e = f ((op) e), where op is an unary operator

An expression of arbitrary complexity becomes a term syntactically when enclosed in
parentheses.

Certain constructs exist to deal with partially applied binary operators and the data types
”built in” the language, namely tuples and lists. They all are terms syntactically and are
explained in the following subsections.

3.1.1 Sections

section:
( binex lexop )

| ( lexop expr )
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So called sections are means of creating functions on the fly by providing the first or
second argument to an infix operator (see section 2.5), that is, to a function that takes
(at least) two arguments.

For example, the expression (e < 42) denotes one of the values true or false, depending
on the value of e. We can now abstract out either side of the expression to get two
functions:

1. a function that checks whether its argument is lower than 42

2. a function that checks whether e is lower than its argument

Sections permit us to do that syntactically by just leaving out the subexpression we
abstract from. We write (< 42) for the first function and (e <) for the second.

Translation: The following identities hold:

(- e) = negate e
(‘op‘ e) = \x → x ‘op‘ (e)
(e -) = \x → e - x
(e ‘op‘) = \x → e ‘op‘ x = (‘op‘) (e)

where ‘op‘ is a binary operator, e is an expression and x is a variable that does not
occur in e

The precedence of the operator in a section where the operator comes first is irrelevant.
It is so as if the subexpression in the section were always written in parentheses.

However, if the operator stands on the right, its precedence must be taken into account.

For example,the function (∗1+ x) multiplies its argument with (1 + x). But (1 + x∗) is a
syntax error. It must be written like this: ((1 + x)∗).

Special role of the subtraction/negation operator

The operator − is treated specially in the grammar. It can act as binary operator,
indicating subtraction, or as an unary operator, in which case it indicates negation. The
token − will always refer to the Prelude definition of either subtraction or negation, it is
not possible to redefine or qualify it.

Because e1 − e2 parses as an infix application of the binary operator −, one must write
e1(−e2) for the alternative parsing. Similarly, (−) is syntax for (\x\y → x− y), as with
any infix operator, and does not denote (\x → −x) – one must use negate for that.

Finally, (−e) is not a section, but an application of prefix negation, as described above.
However, there is a subtract function defined in the Prelude such that (‘subtract‘ e) is
equivalent to the disallowed section. The expression (+(−e)) can serve the same purpose.
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3.1.2 Unit

The unit expression () has type () (see section 6.1.4); it is the only value of that type.

3.1.3 Tuples

For a discussion of tuple types see section 6.1.4.

tuple:

tupleconstructor | n-tuple | strict-n-tuple
tupleconstructor :

(,{,})
n-tuple:

(expr, expr{, expr})
strict-n-tuple:

(expr; expr{; expr})

Tuples are written (e1, ..., ek) where 2 ≤ k ≤ 26. The constructor for an n-tuple is denoted
by (, ..., ) where there are n− 1 commas.

Translation: The following identities hold:
(e1, e2) = (,) e1 e2
(e1, e2, e3) = (,,) e1 e2 e3
... and so forth up to
(e1, e2, ..., e26) = (,,,,,,,,,,,,,,,,,,,,,,,,,,) e1 e2 ... e26

Tuple construction does not normally cause evaluation of the tuple elements ei. We say
that tuple construction is lazy. Sometimes, though, this laziness is not desired. For
example, if it is known to the programmer that the tuple elements will be evaluated
sooner or later anyway, it can be a good idea to force strict evaluation. For this purpose,
replace the commas with semicolons in the tuple construction expression.

3.1.4 Lists

Lists are also discussed in section 6.1.4.

list :
[] (constructor for the empty list)

| [expr{, expr}]
| [expr [ , expr ] .. [ expr ]] (arithmetic sequence)

| [expr | dlcqual{, dlcqual}] (list comprehension)

dlcqual :
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pattern ← expr

| expr
| let { decl{; decl} }

Lists are written [e1, · · · , ek], where k >= 1. The list constructor : as well as the con-
structor for the empty list [] is considered part of the language syntax and cannot be
hidden or redefined.

Translation: The following indentity holds:
[e1, e2, · · · , ek] = e1 : (e2 : (· · · (ek : [])))
The types of e1 trough ek must all be the same (call it t), and the type of the
expression is [t].

Arithmetic Sequences

The arithmetic sequence [e1 [ , e2 ] .. [ e3 ]] denotes a list of values of type t, where each
of the ei has type t, and t is an instance of type class Enum.

Translation: Arithmetic sequences satisfy these identities:
[e1 ..] = enumFrom e1
[e1, e2 ..] = enumFromThen e1 e2
[e1 .. e3] = enumFromTo e1 e3
[e1, e2 .. e3] = enumFromThenTo e1 e2 e3

The semantics of arithmetic sequences therefore depends entirely on the instance declaration
for the type t .

The intended semantics for enumFrom is to evaluate to a list that consists of the start ele-
ment e1, followed by all its successors in ascending order, while enumFromTo restricts the
sequence of successors up to and including e3. The enumFromThen and enumFromThenTo
functions are variants thereof that produce successive elements whose ordinal values differ
by the same amount as the ordinal values of the first two. Hence

Example: enumFrom a = enumFromThen a (succ a)

It is also possible to create decreasing sequences, by giving an e2 that is smaller than e1.

List Comprehensions

List comprehension is a powerful notation to describe lists based on other lists. It has the
form [e|q1, · · · , qn], where n >= 1 and the qualifiers qi are either

• generators of the form p← e, where p is a pattern (see subsection 3.11.1) of type t
and e is an expression of type [t].
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• guards, which are arbitrary expressions of type Bool.

• local bindings let { decl{; decl} }
Because list comprehension qualifiers are separated with commas and the keyword
in is missing, it is not possible to invoke the layout rule by omitting the braces in
this case. For convenience, a single binding let { decl } can be written simply decl.

Such a list comprehension returns the list of elements produced by evaluating e in the
successive environments created by the nested, depth-first evaluation of the generators in
the qualifier list. Binding of variables occurs according to the normal pattern matching
rules (see section 3.11), and if a match fails then that element of the list is simply skipped
over. Thus:

Example: [ x | (2, x) ← [(1, ’a’), (2, ’b’), (3, ’c’), (2, ’d’)] ]

yields the list [’b’, ’d’].

If a qualifier is a guard, it must evaluate to true for the previous pattern match to succeed.
As usual, bindings in list comprehensions can shadow those in outer scopes; for example:

Example: [ x | x ← x, x ← x ] = [ z | y ← x, z ← y ]

Translation: A list comprehension can be rewritten by the following translation
scheme:
LC [e | Q ] = TQ [e | Q ] []
TQ [e | ] L = (e) : L

TQ [e | b, Q] L = if b then TQ [e | Q] L else L

TQ [ e | p ← xs, Q ] L = let

h [] = L

h (p:ys) = TQ [e | Q] (h ys)
h ( :ys) = h ys

in h xs

TQ [ e | let { decls }, Q ] L = let { decls } in TQ [e | Q] L
where e ranges over expressions, p ranges over patterns, xs ranges over list valued
expressions, b ranges over boolean expressions, Q ranges over sequences of qualifiers
and h and ys are fresh variables.

Example Let’s translate the following program fragment:

nums = [1,2,3,4,5,6,7,8,9,10]

squares = [ n*n | n <- nums, n > 4 ]

We have first

nums = 1:2:3:4:5:6:7:8:9:10:[]
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Note that we omitted the parentheses from the translation rule, which is ok since : is
right associative.

Next we apply translation scheme LC to the list comprehension. This gives us
TQ [ n*n | n ← nums, n > 4 ] []

The TQ scheme has 4 rules that cover all possible forms of a qualifier list. Our qualifier
list starts with a generator, thus we have to apply the 3rd rule substituting n*n for e, n
for p and nums for xs. L is the empty list and Q stands for the rest of our qualifier list,
which is n>4. We get

squares = let

h1 [] = []

h1 (n:ys1) = ... // translation of TQ [ n*n | n>4 ] (h1 ys1)

h1 (_:ys1) = h1 ys1

in h1 nums

We now have to translate TQ [ n*n | n > 4 ] (h1 ys1) by the second rule, since the qualifier
list starts with a guard. We substitute e with n*n as before, b is the guarding expression
n>4, Q is empty and L stands for the expression (h1 ys1). The result is

if n>4 then TQ [ n*n | ] (h1 ys1) else (h1 ys1)

and after translating the last remaining TQ scheme by the first rule, the complete program
is

nums = 1:2:3:4:5:6:7:8:9:10:[]

squares = let

h1 [] = []

h1 (n:ys1) = if n>4 then (n*n) : (h1 ys1) else (h1 ys1)

h1 (_:ys1) = h1 ys1

in h1 nums

Difference to Haskell 98/2010: In Frege, the types Double and Float have
no standard instances for Enum, hence floating point arithmetic sequences are not
available out of the box.

3.2 Primary Expression

Primary expressions are used for invocation of member functions, field selection, field
update, array access and array update using a concise notation that will be translated by
the compiler. The translations are given below in the usual way.

primary :
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term
| primary . varid (member function application)

| primary . lexop (member function application)

| primary . unop (member function application)

| qualifier {varid ?} (general field existence function)

| qualifier {varid =} (general field update function)

| qualifier {varid <-} (general field change function)

| qualifier {field{, field}} (update/change values function)

| primary . {varid ?} (field existence check)

| primary . {varid =} (update field in value function)

| primary . {varid <-} (change field in value function)

| primary . {field{, field}} (value update/change)

| primary . [expr] (array element selection)

| do { dlcqual{; dlcqual} } (monadic expression)

field :
varid = expr (field update)

| varid <- expr (field change)

| varid (field update with punning)

The syntax reveals that the . works like a left associative operator. This is so that
primary expressions can be chained, much like in conventional programming languages.
For example

a.[42].age.negate

could be the negated value associated with the age field of the value in the 43rd element
of the array a.

3.2.1 Special interpretation of the dot

The single symbol . as syntactic element used to form primary expression will only be
recognized if the following conditions all hold:

• it is not surrounded by white space on both sides (line breaks count as whitespace)

• the previous token, if any, is not (

• the next token, if any, is not )

In all other cases, a single . will be recognized as •, which is the function composition
operator.

These rules do not affect recognition of operators that contain one or more dots.
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Difference to Haskell 98/2010: The single . is an overloaded character. If it
is enclosed within spaces or if it looks like a section, it will be as if the function
composition operator •1 had been typed in its place. In all other cases, it is taken as
part of a primary expression or a qualified name.
This is to maximize compatibility with Haskell, or to make it easy at least to port
Haskell source code.

3.2.2 Member function application

This is a convenient notation to apply functions defined locally to a name-space such as
a data type or type class. This syntactic form is translated like this:

Translation:
e.m = (T .m e) if the expression e has type t and the type constructor

of t is T and there exists a function T .m
= (C.m e) if m is an overloaded function belonging to type class C

The conditions will be checked in the order listed here and the first possible translation
will be selected. If none of the conditions hold, the compiler flags a type error.

Because the compiler creates functions for access to fields in algebraic data types with field labels
that happen to have the same name as the field label, this syntax is most prominent for
extraction of field values.

For lexical reasons, when e is a nullary value constructor such as Nothing one cannot
write for instance Nothing.show as a shorthand for Show.show Nothing This is because
the lexical analyzer will tokenize this as qvarid and then during name resolution Nothing

would be interpreted as name of a type or name space (which would probably fail). One
can avoid this by writing one of Nothing . show (with space before the dot so as to
make interpretation as qualified variable impossible) or (Nothing).show

3.2.3 Field Existence Test

The expression T .{field?} denotes the function that checks, whether a value v with a
type Tu1 · · ·uk where k >= 0 was constructed with a data constructor in whose field list
the label field appears.

The expression v.{field?} can be used in place of (T .{field?} v) if the type of v is already
known. The type of v can not be inferred from the former expression, only from the latter
one.

1Unicode U+2022. Can be produced in Windows with Alt+0149 (type number on the numeric
keypad), in Linux depending on the input method with Compose+.=
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Translation: Let it be known that v is of type t, and let t be an algebraic data type
with constructors C1, C2 and C3. Let label field appear in C1 and C2. Then the
following transformation can be applied:
T .{field?} = \v → case v of {

C1 · · · → true;
C2 · · · → true;
C3 · · · → false }

v.{field?} = (T .{field?} v) – if v has type Tu1 · · ·uk

The · · · following the constructors represent the correct number of -patterns
for the respective constructor.

If (T .{field?} v) returns true, all field update and access functions for field can be
applied to v. If it is false, however, application of any of those functions results in a
pattern match failure.

Example:

data T = C1 {name::String, age::Int}
chgName :: T -> String -> T

chgName = T.{name=}
nullifyName :: T -> T

nullifyName = T.{name=""}
age10Factory :: String -> T -- where age = 10

age10Factory = C1 {name="", age=10}.{name=}
incrAge :: Int -> T -> T

incrAge n = T.{age <- (n+)}

Figure 3.1: Some primary expressions and their types

3.2.4 Value Update and Change by Field Label

The expression T .{field=} denotes a function that, when applied to two values v and
u, creates a new value of type Tu1 · · ·uk (where k >= 0) that differs from v only in the
value for field field, which is set to u. This implies that v is also of type Tu1 · · ·uk (where
k >= 0) and u of the type that was given for label field in the declaration of T .

The expression T .{field←} denotes a function that, when applied to two values v and
g, creates a new value of type Tu1 · · ·uk (where k >= 0) that differs from v only in the
value for field field, which is set to the result of g applied to the value of field in v. This
implies that v is also of type Tu1 · · · uk (where k >= 0) and g of the type (t→ t), where
t was the type given for label field in the declaration of T .

In both cases, v must have been constructed with a data constructor in whose field list
the label field appears. Otherwise, the result is undefined, and an attempt to evaluate
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it will cause a pattern match failure.

Translation: Let it be known that v is of type T , and let T be an algebraic data type
with data constructors C1, C2 and C3. Let label f appear as the first of two fields
in C1 and as the second of three fields in C2

2. Then the following transformation is
applied:
T .{f=} = \v\u→ case v of {

C1 a1 a2 → C1 u a2;
C2 a1 a2 a3 → C2 a1 u a3 }

T .{f←} = \v\g → case v of {
C1 a1 a2 → C1 (g a1) a2;
C2 a1 a2 a3 → C2 a1 (g a2) a3 }

v.{f=} = (T .{f=} v)
v.{f←} = (T .{f←} v)
T .{f = u} = (flip T .{f=} u)
T .{f ← g} = (flip T .{f ←} g)
flip f a b = f b a – standard function
v.{f = u} = (T .{f=} v u)
v.{f ← g} = (T .{f ←} v g)
v.{f1 = u1, = v.{f1 = u1} – general rules for chained changes/updates

f2 ← u2, .{f2 ← u2}
f3 = u3, · · ·} .{f3 = u3}. · · ·

T .{f1 = u1, = T .{f1 = u1}
f2 ← u2, • T .{f2 ← u2}
f3 = u3, · · ·} • T .{f3 = u3} • · · ·

The ai are auxiliary variables appearing nowhere else in the program.
The identities make it clear that values constructed with C3 cannot be changed or
updated, as this constructor has no field f .

Figure 3.2: Translation of change/update primary expressions

The update and change functions are created by the compiler whenever an algebraic data type
has a constructor with field labels. They are employed by several forms of the primary
expression, whose translation is given in Figure 3.2.

The last 2 rules of Figure 3.2 show that many changes and updates can be mixed in one
pair of braces.

As before, in constructs like v.{field · · ·} where v is an expression, the type of v can not
be determined from that construct alone by the type checker. The type of v must be
known, either trough a type annotation or the type of v must be unambiguously clear for
other reasons.

2 We pick here an arbitrary case for demonstrating purposes. The translation works no matter how
many constructors exists, how many of them have a certain field and how many other fields exist. It
is precisely the independence of the actual representation of the values (viz. the type signatures of the
constructors) that make the label notation a valuable feature.
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3.2.5 Array Element Selection

TODO: write me

3.2.6 Monadic Expression

A monadic expression provides syntactic sugar for application of the monadic operators
>> and >>=. Note that the qualifiers share the same syntax with list comprehensions
qualifiers but that the translation is quite different.

It is transformed according to the following rules:

Translation:
do { e } = e
do { e; q2; · · ·; qi } = e >> do { q2; · · ·; qi }
do { p ← e ; q2; · · ·; qi } = e >>= (\p → do { q2; · · ·; qi })
do { let { d1; · · ·; di };

q2; · · ·; qi } = let { d1; · · ·; di }
in do { q2; · · ·; qi }

where the di range over local declarations, q2; · · ·; qi is a non empty list of arbitrary
qualifiers, e stands for an expressions and p for a pattern.

The first rule states that the last qualifier in a monadic expression must be an expression.
The remaining rules give the translation for each possible form of the first qualifier.

The type and meaning of the monadic operations are defined in the type class Monad and
in the instances for Monad.

3.3 Unary operator application

unary :
primary

| qunop unary

The unary operators are just functions with a funny name, however, the precedence of
unary operator application is even higher than that of normal function application (see
next section). This is so that one can write foo !a and this will be parsed like foo (!a).

3.4 Function application

appex :
unary

| appex unary
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Function application is the most basic notion in a functional programming language and is
written e1 e2. Application associates to the left, so the parentheses may be omitted in (f

x) y. Because e1 could be a data constructor, partial applications of data constructors
are possible.

Example: The expression (,) 1 denotes a function that, when applied to another
expression v, constructs the tuple (1,v).

Functions are curried In Frege,all functions are considered curried ; that is, every
function f has type t1 → t2 for certain types t1 and t2 and thus takes exactly one argument
a of type t1 and returns a value of type t2. Data constructors are just functions, as far as
expressions are concerned. Of course, t2 can itself be a function type, say t3 → t4. In that
case the expression f a denotes a value that is a function and can be applied to another
value b of type t3 immediately, yielding a value of t4. And so forth, ad infinitum.

To be sure, for convenience, the language supports constructs that make it look like there
were functios with more than one argument.

1. Function types can be written t1 → t2 → t3 → t4 since the function type constructor
(→) is right associative. One may view this as the type of a function that takes 3
arguments.

2. Function definitions can specify more than one argument.

3. Support on the lexical and syntactic level for ”binary” operators provide special
support for functions that conceptually have 2 arguments.

4. The left associativity of function application itself allows us to write f a b c d and
nothing prevents us to think of this as ”passing 4 arguments to the function f”.

5. One can always write its own functions so that they take a tuple of values, which
makes function application look very much like in conventional languages, e.g.
add(1,3)3

To sum it up, nothing forces a Frege programmer to think in terms of single argument
functions only. Yet, it is important to keep in mind that behind the scenes this is all done
with single argument functions.

3.5 Infix Expressions

Infix expressions are applications of infix operators (see section 2.5) written in natural
notation. We also speak of binary expressions or operators.

3However, this will actually create a tuple on each function call.
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binex :
binex1

binex17:
appex

binexi:
binexi oplefti binexi+1

| binexi+1 oprighti binexi

| binexi+1 opnonei binexi+1

| binexi+1

oplefti:
lexopi (left associative with precedence i)

oprighti:
lexopi (right associative with precedence i)

opnonei:
lexopi (non-associative with precedence i)

The syntax shows that function application has higher precedence than any binary ex-
pression, followed by binary expressions of precedence 16 down to 1.

Translation:
e1 ‘op‘ e2 = (‘op‘) (e1) (e2)

3.6 Lambda Expression

A lambda expression defines an anonymous function.

lambda:
\ pattern lambda

| \ pattern -> expr

The syntax of patterns and semantics of pattern matching are explained below, see
section 3.11.

A lambda expression \p1 → \p2 → · · · \pk → e can be abbreviated
\p1\p2 · · · \pk → e.

A lambda expression \p → e has type a → b where a is the type of the pattern p and b
the type of the expression e.

Difference to Haskell 98/2010: Each pattern must be introduced with a back-
slash. Separated this way, even complex patterns don’t need parentheses around
them, thus something like \x: → x is valid.
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Prec. Assoc. Operator Purpose
16 right <~ function composition
15 right ** exponentiation

none =~ !~ ?~ /~ ~ ~~ ~~~ regular expression matching
14 left * / % ‘mod‘ ‘div‘ ‘rem‘ multiplicative operators
13 left + - additive operators

right ++ string or list concatenation
12 left << append to stream

‘bshl‘ ‘bshr‘ bit shift left/right
11 left ‘band‘ bit-wise and
10 left ‘bor‘ ‘bxor‘ bit-wise or/exclusive or
9 none < <= > >= relational operators
8 none <=> compare two values
7 none == != check for equality/unequality

=== !== check for identity
6 right && logical and
5 right || logical or
4 none .. the list of values from .. to

right : list constructor
3 left >> >>= monadic bind operations
2 right @ subpattern binding
1 right $ application

Figure 3.3: Predefined Standard Operators

Translation: Application of a lambda expression is equivalent to a case expression
(see section 3.9)
(\p → b) e = case e of p → b

where b and e are expressions and p is a pattern.

3.7 Conditional

cond :
if expr then expr else expr

A conditional expression if e1 then e2 else e3 returns e2 if e1 evaluates to true, e3 if e1
is false and is undefined in all other cases.

The condition e1 has type Bool and the possible results have the same type which is also
the type of the whole expression.
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3.8 Let Expressions

letex :
let { decl{; decl} } in expr

Let expressions have the general form let { d1; · · · ; dn } in e, and introduce a nested,
lexically-scoped, mutually-recursive list of declarations (let is often called letrec in other
languages). The scope of the declarations is the expression e and the right hand side of
the declarations.

Declarations appropriate for use in let expressions are described in section 4.4. The
semantics of the nested declarations are described in subsection 4.4.3.

Pattern bindings are matched lazily, for example

let (a,b) = (3 ‘div‘ 0, 42) in e

will not cause an execution time error until a is evaluated.

The value computed by e is also the value of the whole let expression. It follows, that the
type of the let expression is the type of e.

3.9 Case Expressions

casex :
case expr of { alt{; alt} }

alt :
pattern -> expr

| pattern guarded-exs

| alt where { decl{; decl} }
guarded-exs :

guarded-ex { guarded-ex }
guarded-ex :

| lc-qual{, lc-qual} = expr

A case expression has the general form

case e of { p1 match1; · · ·; pn matchn }

where each matchi is of the general form

| gdi1 = ei1 | · · · | gdim = eim where { declsi }

Each alternative pi matchi consists of a pattern pi and its matches, matchi, which consists
of pairs of guards gdij and bodies eij , as well as optional bindings (declsi) that scope over
all of the guards and expressions of the alternative. An alternative of the form
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pat -> expr where { decls }

is treated as shorthand for:

pat | true = expr where { decls }

A case expression must have at least one alternative and each alternative must have at
least one body. Each body must have the same type, and the type of the whole expression
is that type.

A guard is a list of expressions of type Bool or submatches of the form

pat ← expr

The expressions will be evaluated in the environment of the case expression extended
by the bindings created during the matching of the alternative. The submatches may
themselves create new bindings, these will be in scope for subsequent submatches of the
same guard and for the expression associated with that guard.

A guard is matched successful if all expressions yield the result true and all submatches
succeed. A failed match or an expression that evaluates to false causes the next guard
to be tried if there is one, otherwise the alternative is not taken.

A case expression is evaluated by pattern matching the expression e against the indi-
vidual alternatives. The matches are tried sequentially, from top to bottom. The first
successful match causes evaluation of the expression that is associated with the guard that
matched. If no match succeeds, the result is undefined and the program terminates. Pat-
tern matching is described in section 3.11, with the formal semantics of case expressions
in Figure 3.4.

3.10 Annotated Expression

expr :
topex :: sigma

| topex
topex :

casex
| letex

| cond

| lambda

| binex

An expression may be annotated with a type, the notation e :: t means literally expression
e has type t. If e has indeed this type, or a more general one, the value e will be computed
at the given type, otherwise the compiler will flag an error.
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Example: The expression on the right hand side of the function definition
foo a b c = a+b-c
has type Num a => a, i.e. it can have any type that is an instance of type class
Num. However, if one writes
foo a b c = a+b-c :: Int
this restricts the type to Int.

3.11 Pattern Matching

Patterns appear in lambda abstractions, function definitions, pattern bindings, list com-
prehensions, do expressions, and case expressions. However, the first five of these ulti-
mately translate into case expressions, so defining the semantics of pattern matching for
case expressions is sufficient.

3.11.1 Patterns

Patterns have this syntax:

pattern:
pattern :: sigma

| atpattern
atpattern:

pvar @ atpattern

| listpattern
listpattern:

matcherpattern : listpattern

| matcherpattern
matcherpattern:

pvar ~ regexliteral

| pconapp
pconapp:

pconapp strictpattern

| strictpattern
strictpattern:

! pterm

| pterm
pterm:

conid (constructor)

| conid { [ patternfields ] }
| pvar (variable, possibly strict)

| literal
| ( ) (unit constructor)
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| [ ] (empty list)

| [ pattern{, pattern} ] (literal lists)

| ( pattern, pattern{, pattern}) (tuples)

| ( pattern )

pvar :
varid (variable)

| (anonymous variable)

patternfields :

varid=pattern{, varid=pattern}

The pattern syntax is complicated at first sight only. A pattern is, syntactically, just a
binary expression (see section 3.5) with the follwoing restrictions:

• the only infix operators allowed are @, ~, : and constructors written in infix notation.

• only constructor applications are allowed

• no partial applications are allowed

• the only unary operator is !

• pattern tuples and lists are similar in appearance to their expression counterparts,
except that they are made up of subpatterns instead of subexpressions. They are
just syntactic convenient ways to write constructor applications.

In a constructor application pattern, the arity of the constructor must match the number
of sub-patterns associated with it; one cannot match against a partially-applied construc-
tor.

In contrast to expressions, constructors with field lists do not have to list all fields. It
is even possible to have an empty pattern field list. A constructor with field list is
transformed to an ordinary constructor application. The translation inserts anonymous
variables for all missing fields.

All patterns must be linear - no variable may appear more than once. For example, this
definition is illegal:

f (x,x) = x -- ILLEGAL; x used twice in pattern

Patterns of the form pat::type assert that the value matched with pat must have type
type. Patterns of the form var@pat are called as-patterns, and allow one to use var as a
name for the value being matched by pat. For example, the following function to ”sort”
a tuple

\(a,b) -> if b<a then (b,a) else (a,b)
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constructs a new value that is equal to the original one in the else clause. To reuse the
original value, one could write

\orig@(a,b) -> if b<a then (b,a) else orig

which is equivalent to

\orig -> case orig of (a,b) -> if b<a then (b,a) else orig

Patterns of the form are wildcards and are useful when some part of a pattern is not
referenced on the right-hand-side. It is as if an identifier not used elsewhere were put in
its place.

3.11.2 Informal Semantics of Pattern Matching

Patterns are matched against values. Attempting to match a pattern can have one of
three results: it may fail, it may succeed, or it may diverge. When the match succeeds,
each variable in the pattern will be bound to a value.

Pattern matching proceeds from left to right, and outside to inside, according to the
following rules:

1. Matching a variable p against a value v always succeeds and binds p to v.

2. Matching the wildcard pattern against any value succeeds and no binding is done.

3. Matching a pattern of the form pat::t against a value v matches pat against v.

4. Matching a pattern of the form pvar@pat against a value v matches pat against v,
and if this succeeds, binds pvar to v.

5. Matching a pattern C p1 · · · pk against a value v, where C is a constructor depends
on the value:

• If v is of the form C v1 · · · vk (0 ≤ k ≤ 26), the sub-patterns pi are matched left
to right against the components vi; if all matches succeed, the overall match
succeeds; the first to fail or diverge causes the overall match to fail or diverge,
respectively.

• If v is of the form C ′ v1 · · · vn, where C ′ is a different constructor to C, the
match fails.

• If the value is undefined, the match diverges.

Constructors with arity 0 are just a special case without sub-matches.

Constructor application patterns with field lists will have been transformed to or-
dinary constructor application patterns. Only the named field’s subpattern will be
matched against the corresponding subvalues. If the pattern field list is empty, just
the constructor is checked.
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6. Matching a boolean, numeric, string or character literal against a value succeeds
if the value equals the value represented by the literal. It diverges if the value is
undefined. Otherwise, the match fails.

7. Matching a regular expression literal (see section 2.7.3) against a value of type
String diverges if the value is undefined. It succeeds, if the regular expression
matches the string and fails otherwise.

8. If the pattern is of the form m¨#re# it will be checked whether the regular ex-
pression matches the string as before and when this is the case, the variable m is
bound to the matcher employed in the regular expression match. This, in turn,
makes it possible to access the matched substring as well as the matched substrings
corresponding to any parenthesized groups in the regular expression:

case "John Smith" of

m~#(\w+)\s+(\w+)# -> case (m.group 1, m.group 2) of

(Just a, Just b) -> b ++ ", " ++ a -- "Smith, John"

9. A strict pattern !p is matched against a value v by first evaluating v and then
matching p against the result. Because evaluation of a value can diverge, matching
a strict pattern can diverge in cases when matching a normal pattern would not.
This can change the semantics of a program as the following example shows:

swap1 (a,b) = (b,a)

swap2 (!a, b) = (b,a)

ex1 = swap1 (7 ‘div‘ 0, 42) -- yields (42, 7 ‘div‘ 0)

ex2 = swap2 (7 ‘div‘ 0, 42) -- diverges

The strict pattern is helpful in situations where the case that the value must not be
evaluated is not important enough to justify the cost imposed by laziness:

Example:

– drop the first n elements from a list
drop n xs = case xs of

[] → []
:ys → if n > 0 then drop (n-1) ys else xs

Here, the value n will not be evaluated if the list is empty, thus the application
drop (7 ‘div‘ 0) [] would compute the correct answer (the empty list). But for
nonempty lists, n will be evaluated due to the comparison with 0. By making n
a strict variable, the function will probably perform better in the vast majority of
cases, however, the application above would then cause the program to abort.
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Translation: Matches with regular expressions are translated like this:
case v of #rx# → e = case v of s | s ˜ #rx# → e
case v of m˜#rx# → e = case v of

s | Just m ← s =˜ #rx# → e
where rx stands for the regular expression and s is a fresh variable. (˜) is a function
defined in the Prelude that checks whether a string is matched by a regular expression.
(=˜) is a function defined in the prelude that performs a regular expression match
and returns a result of type Maybe Matcher.

Pattern matches that force evaluation

Some pattern matches force evaluation of the value matched:

• all literal patterns and m˜#rx# need to fully evaluate the value.

• constructor application patterns for non-product types force evaluation of the value
so that the constructor is known.

• strict patterns forces evaluation of the value in all cases, even if it has a product
type. However, subcomponents of the value (if there are any) are not evaluated.

Example: In the example of the drop function above, the constructor patterns for
the list argument force the list passed as argument to be evaluated so that the pattern
match can see if it is an empty list or a list with at least one element.

Irrefutable patterns

A pattern is said to be irrefutable, if the match cannot possibly fail or diverge and if the
matched value does not have to be evaluated during matching.

• Non-strict variable and wildcard patterns are irrefutable.

• p::t is irrefutable, if p is

• v@p is irrefutable if p is

• C p0 · · · pk is irrefutable if all subpatterns are irrefutable and if C is the only
constructor of the algebraic data type.

• All other patterns are refutable.

Irrefutable patterns are matched lazily. The value of the expression

Example: let swap (a,b) = (b,a) in swap undefined
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would be (fst undefined, snd undefined), that is, binding of the local variables in swap
does not extract the values from the argument, nor even evaluation of the argument.

Difference to Haskell 98/2010: There exists no syntax to force a pattern to be
irrefutable.

3.11.3 Formal Semantics of Case Expressions

The semantics of all pattern matching constructs other than case expression is defined
by giving identities that relate those constrcuts to case expressions. The semantics of
case expressions themselves are in turn given as a series of identities, in Figure 3.4.
Implementations will behave so that these identities hold; this is not to say that they
must use them directly, since that would generate rather inefficient code.

In Figure 3.4 e, e′ and ei are expressions; g and gi are guards; q and qi are qualifiers;
p and pi are patterns; v, x and xi are variables; y is a fresh variable with a name that
differs from all other names in the program; C and C ′ are algebraic datatype constructors
(including tuple, list and record constructors); r is a regular expression literal and k is a
boolean, character, string or numeric literal.

Rule (a) matches a general source-language case expression, regardless of whether it
actually includes guards - if no guards are written, then |true is substituted. Also, the
where clause may be missing, this will be equivalent to a where clause with 0 declarations.
The rule simplifies a case expression with more than 1 alternatives into a nested case

expression where each has at most 2 alternatives.

Rule (b) then supplements a case expression that has exactly one alternative with a
catch-all alternative that evaluates to the undefined value. This guarantees that the case
expression evaluates to the undefined value when all matches fail.

From here on, we have to deal with case expressions that have exactly two alternatives,
where the second alternative has a simple wildcard pattern without guards and no where

clause.

Rule (c) simplifies further by reducing multiple pattern guards to nested case expres-
sions. The construction case () of () → · · · indicates that these case expressions do
no pattern matching, but are just used to look at the guards. They are the only places
where guards appear after the translation.

Our case expressions now have only patterns without guards or a ()-pattern with exactly
one guard and no where clauses. A guard may be a list of qualifiers, they are further
reduced to nested case expressions where guards consist of exactly one qualifier in rule
(d).

Finally, rules (e) and (f) resolve the single-qualifier-guards. If the guard is a boolean
expression, the case expression is transformed into a conditional, otherwise into a case

expression that matches the pattern from the qualifier against the expression.



CHAPTER 3. EXPRESSIONS 46

(a) case e of { p1 match1; · · ·; pn matchn }
= case e of { p1 match1; → case e of { p2 match2; · · ·; pn matchn }}
where each matchi has the form
| gi,1 → ei,1 | · · · | gi,m → ei,m where { declsi }

(b) case e of { p1 match1 }
= case e of { p1 match1; → error "pattern match failure" }

(c) case e of {
p | g1 → e1 | · · · | gn → en where { decls };
→ e′ }

= case e′ of { y →
case e of { p → let { decls } in

case () of { () | g1 → e1;
→ · · · case () of { () | gn → en;

→ y; } · · · }
→ y; }}

(d) case () of { () | q1, · · ·, qn → e; → e′ }
= case e′ of { y →

case () of { () | q1 → · · · case () of { () | qn → e;
→ y; } · · ·

→ y; }}
(e) case () of { () | e0 → e ; → e′ }

=if e0 then e else e′

(f) case () of { () | (e0 ← p0) → e ; → e′ }
=case e0 of { p0 → e; → e′ }

Figure 3.4: Identities for case expressions
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Declarations and Bindings

In this chapter, we describe the syntax and informal semantics of Frege declarations.

program:

package packagename [ inline ] where { body }
packagename:

qconid

| qvarid . packagename

| qconid . packagename
inline:

inline ( qname{, qname} )

body :
topdecl

| topdecl ; body
topdecl :

fixity (see section 2.5)

| importdcl (import declaration)

| typedcl (type alias declaration)

| datadcl (data type declaration)

| classdcl (type class declaration)

| instdcl (instance declaration)

| derivedcl (derived instance declaration)

| decl
decl :

annotation (type annotation)

| binding (function or pattern binding)

| nativefun (native function)

decls :
decl{; decl}

47
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The packagename is a sequence of one or more identifiers where the last identifier starts
with an uppercase letter. The package declaration opens a namespace with a name that
equals the last component of the package name. Each top level item can be accessed with
a qualified name that uses the namespace as qualifier, thus in

package my.fine.pack.with.a.long.name.X where

foo = 42

bar = let foo = 24 in foo + X.foo

bar evaluates to 66.

The body is a list of top level declarations. It is immaterial in which order the declarations
are given.

The declarations in the syntactic category topdecl are only allowed at the top level of a
Frege package, whereas decls can be used either at the top level or in the scope of a
data type, class or instance.

Every top level declaration except fixity and import declarations can be preceded by one
of the keywords private, protected or public, where public is the default and hence
redundant. This determines the visibility of the declared item in importing packages. For
detailed discussion of import and export see section 5.3.

For exposition, we divide the declarations into three groups: user defined data types,
consisting of type and data declarations; type classes and overloading, consisting of class
and instance declarations; and nested declarations, consisting of value bindings and type
signatures.

Inline candidates

The inline clause in the package declaration causes the named items to become candi-
dates for inlining. Inlineable functions may not:

• contain a let or where clause

• contain non-exhaustive patterns in lambda or case expressions

• be recursive

• reference private top level items

If these conditions are not met by a certain item, a warning will appear and the item will
be ignored.

Note that all default class operations are automatically inline candidates.

If some module later imports the current package, the source code of the inlineable func-
tions will be available and if the compiler options demand it, full applications of the said
functions will be inlined.
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For example, the ($) operator is an inline candidate of the Prelude and an application

f $ a

will be rewritten as

f a

if the compiler was instructed to do inlining.

4.1 Overview of Types and Classes

Frege uses an polymorphic type system based on the traditional Hindley-Milner type
system [4] to provide a static type semantics. The type system supports type classes or
just classes that provide a structured way to introduce overloaded functions and values.

A class declaration (subsection 4.3.1) introduces a new type class and the overloaded
operations that must be supported by any type that is an instance of that class. An
instance declaration (subsection 4.3.2) declares that a type is an instance of a class and
includes the definitions of the overloaded operations - called class methods - instantiated
on the named type.

Java programmers are familiar with the concept of interfaces which serve a similar pur-
pose like type classes, but there is a fundamental difference: A Frege type class is not a
type in its own right like a Java interface. Instances of type classes are types, instances
of Java interfaces are objects.

4.1.1 Kinds

To ensure that they are valid, type expressions are classified into different kinds, which
take one of two possible forms:

• The symbol * represents the kind of all nullary type constructors.

• If k1 and k2 are kinds, then k1 → k2 is the kind of types that take a type of kind k1
and return a type of kind k2.

Kind inference checks the validity of type expressions in a similar way that type inference
checks the validity of value expressions. However, it is also allowed to state the kind of
type variables explicitly, as long as the given kind is compatible with what kind inference
would have inferred.
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4.1.2 Syntax of Types

The syntax for Frege type expressions is given below. Just as data values are built using
data constructors, type values are built from type constructors. As with data constructors
the names of type constructors start with uppercase letters.

The names of type constructors and data constructors will never be confused (by the
compiler, that is) as the former only appear in expressions in the form of qualifiers and
the latter never appear in types.

sigma:

forall tyvar{ tyvar} . crho (quantified type)

| crho
crho:

constraints => rho (constrained type)

| rho
rho:

( sigma ) → rho (higher ranked function type)

| tyapp → rho (function type)

| tyapp
constraints :

constraint
| ( constraint{, constraint} )

constraint :
classname tvapp{ tvapp}

type:
tyapp → type (function type)

| tyapp
tyapp:

tyapp simpletype (type application)

| simpletype
simpletype:

tyvar (type variable)

| tycon (type constructor)

| ( type )

| ( type , type{, type} ) (tuple types)

| [ type ] (list type)

| ( type | type{| type} ) (nested Either)

tyvar :
varid
| (varid::kind)

tvapp:
tyvar
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| ( tvapp{ tvapp} )

tycon:
qconid

| [] (list type constructor)

| () (unit type constructor)

| (, { , }) (tuple type constructors)

| → (function type constructor (infix operator))

classname:
qconid

kind :
simplekind

| simplekind → kind
simplekind :

*

| ( kind )

The main forms of type expressions are as follows:

1. Type variables written as identifiers beginning with a lowercase letter. A type
variable can stand for a type of any kind.

2. Type constructors. Type constructors are written as identifiers beginning with an
uppercase letter. The identifiers may be qualified. Type constructors denote either
a user defined data type or a type alias.

Special syntax is provided for the type constructors of the function type, list type,
the trivial type and the tuple types.

Type constructors can be constants like Int that denotes the integer type or they
can be polymorphic like the list type.

3. Type application. Polymorphic type constructors (or type variables that stand for
them) must be applied to type parameters to denote a complete type. For example,
the list type constructor requires a type for the elements of the list.

4. A parenthesized type (t) is identical to the type t, but the parenthesis may be
required for syntactical reasons.

Special syntax is provided to allow certain type expressions to be written in a more
traditional style:

1. A function type has the form t1 → t2. Function arrows associate to the right, thus
t1 → (t2 → t3) can be written t1 → t2 → t3.

The function type constructor operator can be used in prefix form, that is a → b is
equivalent to (→) a b, as usual.
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2. A tuple type has the form (t1, · · ·, tk) where k ≥ 2, which is equivalent to the type
(, · · ·,) t1 · · · tk where there are k − 1 commas between the parenthesis. It denotes
the type of k-tuples with the first component of type t1, the second component of
type t2 and so on.

3. A list type has the form [t], which is equivalent to the type [] t. It denotes the
type of lists with elements of the type t.

Although the tuple and list types have special syntax, they are not different from user-
defined types with equivalent functionality.

Expressions, patterns and types have a consistent syntax. If ti is the type of expression
or pattern ei, then the expressions (\ e1 → e2), [e1] and (e1, e2) have the types (t1 →
t2), [t1] and (t1, t2), respectively.

In annotations, annotated expressions and patterns, the type variables in a type expression
can be explicitly quantified (see rule sigma). In this case, it is a static error if a type
variable that was not quantified appears in the type. Absent an explicit forall, all type
variables are assumed to be universally quantified. For example, the type expression a →
a denotes the type ∀ a.a → a. For clarity, however, we’ll sometimes write quantification
explicitly when discussing the types of Frege programs.

More on explicit quantification is explained in the section dealing with higher rank polymorphism.

In type annotations as well as in class and instance declarations, the possible types rep-
resented by type variables (or applications of type variables) can be constrained to be
members of a certain type class.

4.2 User-Defined Data Types

In this section, we describe algebraic and native data types (data declaration) and type
synonyms (type declaration). These declarations may only appear at the top level of a
module.

4.2.1 Algebraic Data type Declaration

datadcl :
[ abstract ] data conid {tyvar} = constructors [ where { decls } ]

constructors :
constructor{| constructor}

constructor :
[ private ] conid {simpletype} (traditional constructor)

| [ private ] conid { labels :: sigma{, labels :: sigma}} (constructor with fields)

labels :
[ ! ]varid{, [ ! ]varid}
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An algebraic data type declaration introduces a new type and constructors for making
values of that type and has the form:

data T u1 · · · uk = K1 t11 · · · t1k1 | · · · | Kn tn1 · · · tnkn

This declaration introduces a new type constructor T with constituent data constructors
K1, · · ·, Kn whose types are given by

∀ u1 · · · uk . ti1 → · · · → tiki → T u1 · · · uk

The type variables u1 through uk must be distinct and may appear in the tij; it is a static
error for any other type variable to appear in the right hand side, except when said type
variable is protected by a forall of a polymorphic record field.

It is possible to reference the newly introduced type constructor T on the right hand side
of its own declaration, which allows to declare recursive types. For example, the following
type is like the built-in list type:

data List a = EmptyList | Cons a (List a)

The declaration can be read ”A list of elements of type a is either the empty list or an
element of type a ”consed” to another list of elements of type a”.

There are some special cases for user defined data types:

product types are data types with exactly one constructor. The most prominent prod-
uct types are tuples.

enumerations are data types where all constructors are constants, i.e.

data Color = Black | Red | Yellow

renamed types are product types where the constructor has exactly one field. Values of
a renamed type will have the same representation as the constructor field at runtime,
hence construction and deconstruction will incur no overhead. Yet at compile time
renamed types are treated like any other algebraic data type. 1

Visibility of constructors and abstract data types

The keyword private in front of a constructor declaration restricts the visibility of the
constructor. Unqualified access is possible only from the declarations given in the where
clause of the type. To access it in the rest of the package, the constructor name must be
qualified with the type name. In other packages, the constructor is not visible at all.

The keyword abstract before a data declaration is equivalent to making all constructors
private.

1This is equivalent to Haskell’s newtype.
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Strict or Eager Constructors

The default behavior for constructor applications is that the arguments are not evaluated.
Evaluation will only take place when a value is deconstructed and a field value so obtained
must be evaluated. Hence, operationally, a data structure does not store values but
closures.

Sometimes a stricter mode is desired. A ! before a field name requires that the constructor
shall be strict in the corresponding argument. It is possible to have some, none, or all
fields strict. Lazy and strict constructors can be mixed in one and the same data type.

Constructors with labeled fields

A different form for constructors is

Kj { fj1 :: tj1, · · ·, fjkj :: tjkj }

where the fji are field labels and the tji are the types.

The type of a labeled field can be polymorphic, that is, it may mention type variables in
a forall-type that are not type parameters of the type constructor.

Example:

data F = F { fun :: forall a . [a] → [a] }

bar F{fun} = (fun [0,1], fun [true, false])

As before, the type of the constructor is

∀ u1 · · · uk . tj1 → · · · → tjkj → T u1 · · · uk

Any number of constructors of an algebraic data type can employ the field list syntax.
Constructors with and without field lists can be mixed. For convenience, when consecutive
fields have the same type, they can be grouped so that the type must be written only
once.

Translation:

data T = · · · | D {fa1, fa2, fa3 :: ta, fb1 :: tb } | · · ·

translates to

data T = · · · | D {fa1, :: ta, fa2, :: ta, fa3, :: ta, fb1 :: tb } | · · ·
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Every field in one and the same constructor must have a different label, but the same
label can appear in a different constructor of the same data definition. All fields with the
same label that appear in the same data definition must have the same type.

Difference to Haskell 98/2010: The same field label with a possibly different type
can appear in constructors of other types. This is because field names are only known
locally in the type whose constructor introduced them. A name given to a field can
thus in addition be used for a global variable.

For every field label appearing in an algebraic data type, the compiler defines automati-
cally functions that extract a field from a value, update or change a field in a value 2 and
check, if the given value has a certain field.

Translation:

data T = A ta | B {fba :: tba, fbc :: tbc } | C {fbc :: tbc, fc :: tc}

translates to

data T = A ta | B tb tbc | C tbc tc where
// For each of the fields fb, fbc and fc, 4 functions will be generated,
// we give here exemplary the ones for fbc
fbc v = case v of
{ B f → f ; C f → f }

updfbc v u = case v of
{ B a → B a u; C a → C u a }

chgfbc v g = case v of
{ B a f → B a (g f); C f a → C (g f) a }

hasfbc v = case v of
{ B → true; C → true; A → false }

The translation shows how the generated field functions look like. The names of the
upd..., chg... and has... functions can not be mentioned directly by the programmer,
as they are picked by the compiler in order to avoid name clashes. There exist suitable
primary expressions to obtain and use the functions, though.

Type Namespaces

Each declaration of a data type T u1 · · · uk with k ≥ 0 creates also a new namespace.
This namespace will be populated with the declarations in the optional where clause of
the data declarations. Each item v declared in the where clause of data type T u1 · · · uk

2This is, of course, nondestructive update, i.e. a new value that differs only in the value for the field
is created.
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can be accessed with the qualified name T .v and, as explained in subsection 3.2.2, if e is
of type T u1 · · · uk, then the expression e.v is equivalent to (T .v e).

We call this feature type directed name resolution and it applies to algebraic datatypes
as well as native ones. To obtain best results, the type checker collects not yet resolved
names of a top level function in the form of type constraints, and tries to solve them all
at once before the final type gets inferred. However, unlike with type class constraints,
unsolved name resolutions are not allowed and thus never appear in the type of a top
level function.

Difference to Haskell 98/2010:

• Field names live in the namespace that is associated with the constructed type
and are not global.

• Several forms of primary expressions deal with extraction, update and change
of fields.

• Infix notation cannot be used in constructor declarations.

• No constraints can be given for constructors.

• There is no deriving clause. A derive declaration can be used instead.

• A data type with exactly one constructor that has exactly one field serves the
same purpose as a newtype declaration.

4.2.2 Native Datatype Declaration

datadcl :
data conid {tyvar} = mutable native nativeitem [ where { decls } ]
| data conid {tyvar} = pure native nativeitem [ where { decls } ]
| data conid {tyvar} = native nativeitem [ where { decls } ]

nativename:
varid
| conid
| varid . nativename

| conid . nativename

A native data type declaration data T u1 · · · uk = native N introduces a new type
constructor T that is associated with the Java type N . T u1 · · · uk is to Frege an
abstract data type. N may be a primitive java type like int or any java reference type.
It is required to use fully qualified Java names for the latter.

The three syntactic forms help to distinguish between mutable and immutable (pure)
data types, and data types whose values can be regarded as immutable under certain
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circumstances and mutable in others. Truly immutable objects are rare in Java, so in
most cases the pure native form will not be the appropriate one. A deeper discussion
of this matters can be found in section 8.6.

For convenience, Java type names can be specified without quotes, as long as the compo-
nents are valid Frege identifiers. This excludes names starting with underscores or names
that contain the $ sign and also Java generic type expressions like java.util.List<Integer>.
Such Java types must be specified in the form of a string literal.

The generated code will contain the native type string and this will make the Java
compiler complain if something is not in order.

Note that void is not a valid native type name since void is not a proper type.

For one and the same native type, more than one native data type declaration can exist.
Becaue every reference type is its own supertype, the type checker will not regard those
types as different (see also section 4.2.2).

Native data types can be used like any other type, for example, they can serve as building
blocks for algebraic data types, or be parts of function types. However, since there is no
constructor nor any knowledge about the implementation of the type, no pattern matching
on values of native data types is possible. Basic operations on the type can be introduced
with native function declarations.

Frege borrows all fundamental data types like characters, numbers, booleans and strings
from Java via native data type declarations.

Support for Java Class Hierarchy

The Frege type checker takes into consideration the subclass relations between Java
types. If T1 and T2 are type constructors of the same kind that are associated with
Java class or interface types C1 and C2, and if C2 is a super class of C1 or an interface
implemented by C1, directly or through inheritance, then a type application T1 a1 · · · an
can appear wherever T2 a1 · · · an is expected.

In addition, in the translation of an expression of the form e.m where e has a type
Ta1 · · · an and T is associated with a native type C, not only the name space T is searched
for m, but all name spaces of all known types that are associated with supertypes of C.

4.2.3 Type Synonyms

typdcl :

type conid {tyvar} = sigma

A type synonym has the form

type T u1 · · · uk = t
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where k ≥ 0 and the ui are the type variables occuring in the type expression t. It is a
static error if t contains a free type variable not listed on the left hand side among the ui.

A type synonym Ta depends on another type synonym Tb if its right hand side mentions
Tb or another type synonym Tc that in turn depends on Tb.

It is a static error if a type synonym T depends on itself. This means that cyclic definitions
like

type T a = (a, X a)

type X a = T a

are forbidden.

A type expression (T t1 · · · tk) where T is a type synonym is equivalent to the type
expression t of the right hand side of the declaration of T where each variable ui in t is
replaced by the type expression ti. Type synonyms cannot be partially applied in type
signatures, it is a static error if during typechecking a type synonym declared with k
type variables is found, that is applied to less than k type arguments. However, it is
not required that the right hand side of a type synonym declaration is a type of kind *;
expansion may produce a partially applied type constructor:

data T key value = T [(key, value)]

type X = T String

foo :: X Int

foo = [("x", 42)]

In the example above, expansion of type X produces a partially applied type constructor;
to form a type one more argument is required.

Type synonyms are most often used to make type expressions more readable and programs
more maintainable.

Liberalized Type Synonyms

Unlike in Haskell 2010, the right hand side of a type synonym may be a forall type or
a constrained type. Consequently, one can write:

type Discard a = forall b. Show b => a -> b -> (a, String)

f :: Discard c

-- :: forall b c. Show b => c -> b -> (c, String)

f x y = (x, show y)
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g :: Discard Int -> (Int,String) -- A rank-2 type

-- :: (forall b . Show b => Int -> b -> (Int, String)) -> (Int, String)

g f = f 3 true

Such liberalized type synonyms may not be used where the right hand side - if written
literally - would not be allowed. For example, given the definition above, the follwoing
annotation is invalid, because it applies the synonym at a place where only ordinary types
are allowed:

h :: Int -> Maybe (Discard Int) -- illegal type argument (Discard Int)

4.3 Type Classes and Overloading

4.3.1 Class Declarations

classdcl :
class conid [ constraints => ] classvar [ where { decls } ]

classvar :
varid

A class declaration introduces a new class and the operations (class methods) on it. A
class declaration has the general form:

class C (S1 u,· · ·,Sk u) => u where decls

This introduces a new class name C with class variabe u and so called superclasses Si.

A class variable stands for potential types that will be instances of the type class. It is
also possible that the class variable is higher kinded, i.e. that it is applied to other types
in the class operation annotations. The kind of the class variable must be the same in all
class operations and in all superclasses.

The Si denote the superclasses of C. The superclass relation must not be cyclic. If S is
a superclass of C, then each type that is an instance of C must also be an instance of S.

The class declaration introduces new class methods in its decls part. The class methods are
not only visible in the scope of the class, but also at the top (package) level. Consequently,
a class method can not have the same name as a top level definition or another class
method.

A class method declaration is either

• a new operation introduced with a type annotation. The type given must mention
the class variable and the class variable must not be constrained.
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Optionally, a definition of the method can be given. The definition serves as a default
implementation and will be used in instance definitions that give no instance specific
implementation of that method.

A native function is annotation and definition in one declaration, so this too is
allowed. This especially makes sense when one models Java inheritance hierarchies
with type classes.

• a definition of one of the class methods of a superclass. There must be no annotation
for such methods. The type of the class method will be derived from that of the
superclass method by replacing the superclasses’ class variable with the current class
variable.

No other declarations are permitted in the decls part of a class declaration.

A class declaration without where clause is equivalent to one with an empty decls part.
This can be useful for combining a collection of classes into a larger one that inherits
all of the class methods in the original ones. Nevertheless, even if a type is an instance
of all the superclasses, it is not automatically an instance of the new class. An instance
declaration (with no where clause) is still required to make it one.

The same holds for types that happen to have implementations for all the operations of
a class. That does not make them automatically instances of the class: there is no class
membership without an instance declaration.

Example We give here a simplified version of some classes declared in the standard
Prelude. See also section 6.2.

class Eq eq where

(==) :: eq -> eq -> Bool

(!=) :: eq -> eq -> Bool

hashCode :: eq -> Int

a != b = if a == b then false else true

class Ord Eq ord => ord where

(<) :: ord -> ord -> Bool

...

class Enum Ord enum => enum where

ord :: enum -> Int

from :: Int -> enum

a == b = (ord a) == (ord b)

...

The Eq class introduces two new overloaded operations and the function hashCode, with
a default implementation for the (!=) method that makes use of the (==) operation.
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The Ord class is a subclass of Eq and introduces more relational operations. The Enum

class is declared as subclass of Ord and this makes it automatically also a subclass of Eq.
Therefore, it is possible to give a default implementation for the (==) method.

4.3.2 Instance Declarations

instdcl :
instance classname [ constraints => ] type [ where { decls } ]

An instance declaration introduces an instance of a class. Let

class C u where { cbody }

be a class declaration. The general form of the corresponding instance declaration is:

instance C (X1 ta,· · ·,Xn tb) => T t1 · · · tk where { decls }

where k, a, b ≥ 0, a, b ≤ k and n ≥ 0.

If T is a type synonym, the expansion of the type expression must eventually lead to a
type application of a type constructor3. Otherwise, T itself is already a type constructor.
The type expression T t1 · · · tk must have the same kind as the class variable of C.

An instance declaration may place arbitrary constraints X1 · · · Xn on all or some of the
types represented by the type variables t1 · · · tk. For example

Example: instance Eq (Eq a) => [a] where ...

states that for a list type to be an instances of Eq, the list elements themselves must be
of a type that is an instance of Eq. This is another way to say that in order to check list
equality, one must be able to check equality on list elements also.

In this example, the instantiated class and the class mentioned in the constraint are
the same. This is caused by the logic of relational operations, but is not a language
requirement. Any other class could be mentioned as well.

There may be at most one instance per type class and type constructor. Because of this
restriction, it is usually a good idea to design the instance as general as possible. The
most general case is when the ti are all distinct type variables.

Example:

class C this where ...
instance C [Int] where ... – ok, but quite restrictive
instance C [a] where ... – ERROR, [] is already an instance of C
instance C (a,a) where ... – ok, but restricted
instance C (a,b,c) where ... – most general instance

3Note that a function type like a→ b is an application of type constructor (→ )
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Difference to Haskell 98/2010: The arguments to a type constructor need not be
distinct type variables.
Type synonyms in instance declarations are allowed.

Instance methods Instance specific bindings of class methods and not yet implemented
superclass methods are searched in the scope of the instantiated type and in the instance
declarations decls. It is an error if both sources contain a binding for a class method.
It is also an error if none of them contains such a binding unless there is a default
implementation.

Annotations may be given; they will be checked to match the computed type of the
instance method. This type is obtained by substituting the type expression describing
the instantiated type for every occurrence of the class variable in the annotation of the
class method. In addition, during type check, it will be checked that the definition of the
instance method indeed has the computed type, as usual.

It is also possible to implement a class method with a native function.

If a class method has a default implementation but no instance specific implementation
is found, the source code of the default implementation is taken to construct an instance
specific implementation.

Each implementation of a class method that comes from the instance declarations or from
a default implementation is linked back to the namespace of the instantiated type. This is
so that the implementations of class operation classop specific for type T can be accessed
under the qualified name T .classop.

Instantiating a Class Hierarchy with a single instance declaration. It is possible
to declare an instance for a subclass and hence to make the instantiated type also an in-
stance of all superclasses without giving explicit instance declarations for the superclasses,
provided that

• the instance declaration contains implementations for the required class methods of
the superclasses or

• the subclass gives default implementations for the superclasses’ required methods.

For example, the type class Enum is a subclass of Ord, which is in turn a subclass of Eq.
Eq requires definitions for hashCode and ==. Ord requires a definition for <=>. Enum has a
default implementation for (Eq.hashCode) and (Ord.<=>). Ord has a default implemen-
tation for (Eq.==) in terms of (Ord.<=>). Class Eq itself has a default implementation
for (Eq.!=). Thus it is possible to declare Enum instances without caring about the Eq

and Ord methods. But because Ord has no implementation for (Eq.hashCode) one must
provide one if one defines an Ord instance without there being also a Eq instance.
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Note: If A is a superclass of both B and C, it is not valid to have just instances
for B and C, but not A for some type T in a module, because the order instance
declarations are processed is unpredictable. It is only guaranteed that instance dec-
larations for any class are processed before instance declarations for its subclasses.
Because T -specific implementations for As methods can only be given, explicitly or
implicitly, in either the instance declaration for B or that for C, the validity of the
program depends on the order of processing. Hence the correct thing to do is to
instantiate A, B and C.

4.3.3 Derived Instances

For the Prelude classes Eq, Ord, Enum, Bounded and Show it is possible to derive instances
automatically.

derivedcl :
derive classname [ constraints => ] type

Derived instances provide convenient commonly-used operations for user-defined data
types. For example, derived instances for data types in the class Eq define the operations
== and !=, freeing the programmer from the need to define them. The precise details of
how the derived instances are generated for each of these classes are given in chapter 9,
including a specification of when such derived instances are possible.

Translation: A valid derive declaration is translated like this:
derive C (X1 ta,· · ·, Xn tb) => T t1 · · · tk =

instance C (X1 ta,· · ·, Xn tb) => T t1 · · · tk
where { declsC }

derive C T t1 · · · tk =
instance C (C t1,· · ·, C tk) => T t1 · · · tk

where { declsC }
where declsC are compiler generated declarations whose concrete content depends
on C and the structure of T t1 · · · tk.

As with instance declarations, it is possible to specify constraints in derive declarations.
The constraints so given must contain the set of constraints (C t1,· · ·, C tk) where C is
the derived class and the ti are the type variables of the instantiated type. If, however,
no constraints at all are given, the constraints needed will be silently supplied by the
compiler.

4.3.4 Ambiguous Types

A problem inherent with overloading is the possibility of an ambiguous type. For example,
using the from and ord functions from the Enum class introduced in the last section, then
the following declaration
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amb x = if ord (from 1) == 1 then x else x+x

causes the type inference algorithm to attribute the type

(Enum b,Num a) => a → a

to amb. If such type were allowed, it would never be possible to decide at which type
to instantiate type variable b which is totally unrelated to type variable a which stands
for the argument’s type. Therefore, such types are considered ill-typed and programs
containing them are rejected.

We say that an expression has an ambiguous type if, in its type

forall u1, · · ·, uk . cx => t

there is a type variable uj that occurs in cx but not in t.

Ambiguous types can only be circumvented by input from the user. One way is through
the use of expression type-signatures as described in section 3.10. Our example could be
rewritten as follows:

amb x = if ord (from 1 :: Bool) == 1 then x else x+x

4.4 Nested Declarations

The declarations described here can appear at the top level or in the scope of a class
declaration, instance declaration or datatype declaration. With the exception of the
native function declaration they can also appear in a let expression. In fact, this are the
only declarations allowed in let expressions and where clauses that are part of expressions.
(Such where clauses will be transformed to let expressions ulitmatively.)

decl :
annotation (Type Annotation)

| binding (Function or Pattern Binding)

| nativefun (Native Function Declaration)

4.4.1 Type Annotations

A type annotation specifies the type of a variable.

annotation:
annoitem{, annoitem} :: sigma

annoitem:
varid | symop | unop
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Translation: An annotation with more than one item is translated to k annotations,
where k is the number of annotated items.

a1, · · ·, ak :: s
=

a1 :: s
· · ·

ak :: s

A type annotation has the form

v :: t

where v is the annotated item which may be a variable or an unary or binary operator
symbol. (To simplify matters, we use the term variable in place of annotated item in the
discussion that follows.)

Except for class methods, annotated variables v must have also a value binding, and the
binding must appear in the same declaration list that contains the type signature; i.e. it
is invalid to give a type signature for a variable bound in an outer scope. Moreover, it is
invalid to give more than one type signature for one variable, even if the signatures are
identical.

As mentioned in subsection 4.1.2, every type variable appearing in a signature is univer-
sally quantified over that signature, and hence the scope of a type variable is limited to
the type expression that contains it. For example, in the following declarations

f :: a -> a

f x = x :: a -- invalid

the a’s in the two type expressions are quite distinct. Indeed, these declarations contain
a static error, since x does not have type ∀ a.a but is dependent on the function type.

If a given program includes a signature for a variable f , then each use of f is treated as
having the declared type. It is a static error if the same type cannot also be inferred for
the defining occurrence of f .

If a variable f is defined without providing a corresponding type signature declaration,
then each use of f outside its own declaration group (see section 4.4.3) is treated as having
the corresponding inferred, or principal type. However, to ensure that type inference
is still possible, the defining occurrence, and all uses of f within its declaration group
must have the same monomorphic type (from which the principal type is obtained by
generalization, as described in section 4.4.3).

For example, if we define

sqr x = x*x
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then the principal type is sqr :: forall a.Num a => a→ a, which allows applications such
as sqr 5 or sqr 0.1. It is also valid to declare a more specific type, such as

sqr :: Int → Int

but now appications such as sqr 0.1 are invalid. Type signatures such as

sqr :: (Num a, Num b) => a → b

sqr :: a → a

are invalid, as they are more general than what is warranted by the definition.

However, there are certain cases where the type checker infers a type that is not the most
general one possible for the definition given. In such cases, an annotation can be used
to specify a type more general than the one that would be inferred. Consider this rather
pathological example:

data T a = K (T Int) (T a)

f :: T a -> a

f (K x y) = if f x == 1 then f y else undefined

If we remove the annotation, the type of f will be inferred as T Int -> Int due to the
first recursive call for which the argument to f is T Int.

To sum it up, there are the following possible uses of type annotations:

1. Declaration of a new class method, as described in subsection 4.3.1.

2. Declaration of a more restricted type than the principal type.

3. Declaration of a more general type than the inferred type. Please observe that,
even if the type inference algorithm is not able to infer the most general type from
a definition, it is still able to check whether the type signatur supplied is valid.
Therefore, type annotations cannot be used to lie about the type of a variable.

4. Declaration of a type that is identical to the type that would have been inferred.
This may be useful for documentation purposes.

5. Declaration of a polymorphic type for let bound functions.

6. Declaration of a higher ranked type.

4.4.2 Function and Pattern Bindings

binding :
lhs rhs

lhs :



CHAPTER 4. DECLARATIONS AND BINDINGS 67

funlhs | pattern
funlhs :

varid pterm { pterm }
| pconapp lexop pconapp

rhs :
= expr [ where { decls } ]
| guarded-exs [ where { decls } ] (see section 3.9 for syntax of guarded-exs)

We distinguish two cases of value bindings: If the left hand side is neither a constructor
application nor an application of the unary operator ! or the pattern name binding
operator @4, and if it can be interpreted as a variable applied to one or more patterns,
or as a binary operator except @ applied to two patterns in infix notation, we call it a
function binding, otherwise it is a pattern binding. Thus, a left hand side like m˜#re#,
though making a valid pattern, will be treated as function binding (i.e. definition of
the operator ~). On the other hand, x:xs, [a, b] and (a, b) are pattern bindings, since
all three just employ special syntax for constructor applications, !x is a (strict) pattern
binding and qs@q: is a pattern binding for a list qs with head q and an unnamed tail.
Finally, a simple variable or an operator enclosed in parentheses is a pattern binding for
that name.

Function bindings

A function binding binds a variable (or operator) to a function value. The general form
of a function binding for variable x is:

x p11 · · · p1k match1

· · ·
x pn1 · · · pnk matchn

where k ≥ 1, n ≥ 1 and each pij is a pattern and the matches matchi are just like the
matches in case expressions.

All clauses defining a function must be contiguous, and the number of patterns in each
clause must be the same. The set of patterns corresponding to each match must be linear,
that is, no variable is allowed to appear more than once in the set.

4These exceptions in an already complicated rule can only be justified by the fact that one seldom
wants to redefine the ! or @ functions.
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Translation: The general binding form for functions is semantically equivalent to the
equation

x = \x1 · · · \xk → case (x1, · · · , xk) of
(p11, · · · , p1k) match1

· · ·
(pn1, · · · , pnk) matchn

where the xi are new identifiers.

Note that several clauses defining a function count as a single declaration. While defi-
nitions of different functions may appear in any order without changing the meaning of
the program, this is not true for the clauses of a function definition. On the contrary,
because of the translation given above and the semantics of case expressions, their order
is quite important and cannot usually be changed without changing also the meaning of
the program.

Pattern bindings

A pattern binding binds all variables contained in the pattern on the left hand side to
values. It is a static error if the pattern does not contain any variables. The pattern
is matched against the expression on the right hand side only when one of the bound
variables needs to be evaluated. In any case, the expression on the right hand side will
be evaluated at most once, and for each bound variable the match is performed at most
once.

This default lazy semantics can be overridden by using strict patterns (see page 43). A
strict variable will be evaluated as soon as it is bound to a value. This may cause other
variables on which the strict variable depends to be evaluated, too.

A simple pattern binding has the form v = e, where v is just a variable. No actual pattern
matching is needed in this case. The evaluation of v will cause evaluation of e and the
resulting value is the value of v. If v is not evaluated, e will also not be evaluated.

The general form of a pattern binding is p match, where match is the same structure as
for function bindings above, which in turn is the one used in case expressions; in other
words, a pattern binding is:

p | g1 = e1 | g2 = e2 | · · · | gm = em
where { decls }
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Translation: The general pattern binding above is semantically equivalent to the
following:

x = let { decls } in
case () of { () | g1 = e1 | g2 = e2 | · · · | gm = em }

v1 = case x of { p→ v1 }
· · ·
vk = case x of { p→ vk }

where k ≥ 1 and the vi are the variables occurring in the pattern p and x is a variable
not used elsewhere.

4.4.3 Static Semantics of Function and Pattern Bindings

The static semantics of the function and pattern bindings of a let expression or where
clause are discussed in this section.

Dependency Analysis

In general the static semantics are given by the normal Hindley-Milner inference rules. A
dependency analysis transformation is first performed to simplify further processing. Two
variables bound by value declarations are in the same declaration group if their bindings
are mutually recursive (perhaps via some other declarations that are also part of the
group).

Application of the following rules causes each let or where construct (including the
(implicit) where defining the top level bindings in a module) to bind only the variables
of a single declaration group, thus capturing the required dependency analysis:

1. The order of function and pattern bindings in where/let constructs is irrelevant.

2. let { d1; d2 } in e transforms to let { d1 } in let { d2 } in e when no identifier
bound in d2 appears free in d1.

Generalization

The type system assigns types to a let-expression in two stages. First, the right-hand
sides of the declarations are typed, giving types with no universal quantification. Second,
if and only if the local declaration had a type annotation, the annotation is checked and
a generalized type is attributed to the binding. Finally, the body of the let-expression is
typed.

Difference to Haskell 98/2010: In Frege, un-annotated let bound declarations
are not generalized. If one wants polymorphic local functions, one needs to provide
a type signature.
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For example, consider the declaration

f = let g y = (y,y) in (g true, g 0)

that would be valid in other languages with Hindley-Milner type system. The type of g’s
right-hand side is a→ (a, a). A generalization step would attribute to g the polymorphic
type ∀a.a → (a, a), after which the typing of the body part can proceed. This makes g
independent of any other types and allows its usage in the body at different types.

In Frege, however, this generalization step has been deliberatly ommitted. The rationale
for this is:

• As Simon Peyton Jones argues in [5]:

... generalisation for local let bindings is seldom used; that is; if they are
never generalised, few programs fail to typecheck ... We base this claim on
compiling hundreds of public domain Haskell packages, containing hun-
dreds of thousands lines of code. Furthermore, those programs that do
fail are readily fixed by adding a type signature.

• Generalisation affects type constraints that arise from the use of type class opera-
tions. This means that type class constraints must be passed to local functions at
runtime, and the associated operations can only be performed indirectly. Consider
the following example:

f = (dbl 7, dbl 13) where dbl x = x+x

Here, the dbl function is only used at type Int, and without generalisation we can
simply generate Java code like:

public int dbl(final int x) { return x+x; }

But with generalisation, dbl gets the type: ∀a. Num a => a → a and we need
something like

public Object dbl(CNum ctx, Object x) {
return ctx.plus().apply(x).apply(x).result(); }

which results in at least 4 object creations.

• Type directed name resolution also benefits, as the type of some data may be ex-
posed in some let bound function or list comprehension (which is desugared to a
series of let definitions), but this knowledge will not be usable in other let bound
functions when their type is generalized.

Sometimes it is not possible to generalize over all the type variables used in the type of
the definition. For example, consider the declaration

f x = let g z y = ([x,z],y) in ...



CHAPTER 4. DECLARATIONS AND BINDINGS 71

In an environment where x has type a, the type of g’s defining expression is a → b →
([a], b). In this case, only b could be universally quantified because a occurs in the type
environment. We say that the type of g is monomorphic in the type variable a.

The effect of such monomorphism is that the first argument of all applications of g must
be of a single type. For example, it would be valid for the ”...” to be

(g true 0, g false 1)

(which would, incidentally, force x to have type Bool) but invalid for it to be

(g true 0, g ’c’ 1)

It is worth noting that the explicit type signatures provided by Frege are not powerful
enough to express types that include monomorphic type variables. For example, we cannot
write

f x = let

g :: a -> b -> ([a],b)

g y z = ([x,y], z)

in ...

because that would claim that g was polymorphic in both a and b. In this program, g can
only be given a type signature if its first argument is restricted to a type not involving
type variables; for example

g :: Int -> b -> ([Int],b)

This signature would also cause the variable x to have type Int.

Higher Rank Polymorphism

In the Hindley-Milner type system, the types of lambda bound variables are always
monomorphic. This restriction keeps type inference decidable, but excludes higher rank
polymorphism, that is, the ability to write functions that take polymorphic functions as
arguments. For an in depth discussion of these matters see [4]. The conservative extension
of the type system proposed in that paper is implemented in the Frege type system.

To exemplify the problem, consider the following program:

foo :: ([Bool], [Char])

foo = let

f x = (x [true,false], x [’a’,’b’,’c’])

in f reverse
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In the body of f, the function x is applied both to a list of booleans and a list of characters
- but that should be fine because the function passed to f, namely reverse (a library
function with type ∀a.[a]→ [a]) works equally well on lists of any type. Nevertheless, the
expression is rejected as it stands. With the restriction on lambda bound arguments, the
type checker can assign to x the type [Bool] -> [Bool] or [Char] -> [Char] but not
∀a.[a]→ [a].

The Frege type checker can overcome this restriction of the Hindley-Milner type system
with the help of user supplied type annotations. In our case, there are two opportunities
to suggest the correct type for the argument x:

1. One could annotate the pattern x with the type

forall a.[a] → [a]

2. One could annotate f itself with

(forall a.[a] → [a]) → ([Bool], [Char])

If one chooses the former, the example above looks then like

foo :: ([Bool], [Char])

foo = let

-- f will take a polymorphic function as argument

f (x::[a]->[a]) = (x [true,false], x [’a’,’b’,’c’])

in f reverse

Note that we can save the forall, because the type variable a scopes over the whole type
of x. The type checker would now be able to infer the following type for f :

f :: (forall a.[a]→ [a]) → ([Bool], [Char])

Note that this is the same type one could have annotated f with and that in this case the
forall is crucial, as it restricts the scope of type variable a to the type in parentheses.
Without it, one would get

f :: ([a]→ [a]) → ([Bool], [Char])

which is identical with

f :: forall a . ([a]→ [a]) → ([Bool], [Char])

and this would mean something like: ”f is a function that takes as first argument a
function of some unknown, albeit fixed list type, ...” and of course neither a list of Bool
nor a list of Char could be passed to this function. Whereas the former type signature
with the correct placement of forall says: ”f is a function that takes as first argument
a function that can handle any list type, ...”.

Difference to Haskell 98/2010: Haskell 98 does not allow higher rank polympor-
phism, while extensions like GHC do.
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4.4.4 Native Declaration

nativefun:

[ pure ] native annoitem [ javaitem ] :: sigma [ throws ]
javaitem:

nativename | unop | symop | stringliteral
throws :

throws type{, type}

The basic form of the native declaration

native v j :: t

introduces a new variable v with type t, that will behave like any other Frege variable
of that type but is implemented in Java. j is a string value that contains information
regarding v’s Java implementation. For convenience, j can be written without quotes as
long as the names or operators specified would also be valid in Frege. Often, it is the
case that v and j are the same, as in

data String = pure native java.lang.String

pure native length length :: String -> Int

In such cases, j can simply be omitted.

The declarations above introduce the type String, which is based on the Java class
java.lang.String and a function length that takes a value of type String and returns
an Int 5. This function is implemented with an instance method length. Because a Java
instance method needs a receiver, which is by definition the first argument, and the first
argument is a String, which is implemented by java.lang.String, we can assume that
an application

length "foo"

will be compiled to something like

"foo".length()

The Frege compiler cannot check the validity of the native declaration, only very basic
sanity checks are currently possible. Errors not detectable (for example incorrect type
information, spelling errors in identifiers, etc.) will normally cause failures during compi-
lation of the generated Java code. The presence of invalid native declarations should be
the only reason for rejection of the generated code by the Java compiler6; thus whenever
javac complains, one should first check the native declarations.

5The declarations shown here for demonstration are actually part of the standard library and hence
available in every frege program.

6Another reason would be bugs in the Java or Frege compilers
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During code generation, expressions that contain native values are mapped to certain
Java constructs such as

• field access expressions (see [6, section 15.11])

• method invocation expressions (see [6, section 15.12]) for both static and non-static
methods

• class instance creation expressions (see [6, section 15.9])

• unary expressions (see [6, section 15.15])

• cast expressions (see [6, section 15.16])

• binary expressions (see [6, section 15.17 to 15.24])

in a transparent and well defined way. This is explained in detail in chapter 8.

Overloaded native methods

The Java language allows overloading of methods [6, section 8.4.9]. Thus, in Java one can
have different methods with the same name. To facilitate easy (perhaps semi-automatic)
adoption of Java APIs in Frege, native functions can also be overloaded.

nativefun:

[ pure ] native annoitem [ javaitem ] :: sigma [ throws ]{| sigma [ throws ]}

To do this, one simply specifies the different types separated by a vertical bar. The
typechecker will check at every call site if one of the given types fits in, and it will
complain if the overload cannot be resolved unanimously.

Example:

pure native foo x.y.Z.foo :: Int -> Int | Int -> Int -> Int

bad = foo 3

good = foo 3 + 42

In the example above, the expression for bad is ambiguous: bad could have type Int or
Int->Int, therefore this would be rejected. By annotating bad with one of the possible
types, the binding could be made valid.

In the expression given for good, however, the type of the application foo 3 is certainly
Int, as it appears as the operand of an integer addition. Hence, this overloaded use of
foo is resolved to be at type Int->Int.
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Packages

Frege code is organized in packages. One source file contains exactly one package.
Compilation of a package creates an intermediary Java source file that contains the
definition of a public class whose fully qualified name equals the Frege package name.
Finally, the Java compiler is invoked to compile the intermediate file, which results in at
least one class file.

For example:

package pack.A where -- frege code

-- declarations and bindings

compiles to

package pack; // java code

public class A {

// compiled declarations and bindings

}

Each source file must start with a package declaration. The syntax of package names is
given in chapter 4.

All components of the package name except the last one should be in lowercase. This
is because the Java package name is derived from these components and Java has the
convention that the package name should be all lowercase.

Neither file name of the Frege source code file nor the path where that file is stored have
to reflect or match the package name. However, the intermediate Java source file and the
final class files are subject the the customs of Java. That means that the files reside in a
path that resembles the package name and the file name is the class name plus a suffix.

75
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5.1 Execution of Frege Packages

The generated Java code for a Frege package contains static fields, methods and inner
classes that correspond to Frege values, functions and types defined in that package.
If the source code contained a top level binding for the name main, then the compiler
creates a wrapper method with the signature

static void main(java.lang.String[] args)

which converts the argument array to a list, evaluates the main function from the Frege
code and runs the resulting IO action.

This makes it possible to run any class file that is the result of compiling a Frege
package that contained a definition of main with the java command. Note that, because
the generated Java code will contain references to Frege runtime code, the standard
libraries and possibly other imported Frege packages, execution of a Frege package
requires a class path that allows the JVM to find the required classes.

Special handling of the main function

The only allowed types for main are

main :: [String] -> IO X

main :: IO X

where X is some arbitrary type. To ensure this, the compiler will provide one of the
following type annotations prior to type checking:

main :: [String] -> IO ()

main :: IO ()

The decision which annotation is supplied depends on whether main looks like a function
or not. For example, the following will result in a type error:

main = return . const ()

because it doesn’t look like a function, when in fact it is one. The type checker will expect
an IO () value, and this will not unify with the inferred type.

To avoid such errors, one of the following is suggested:

• Do not write a main function in point-free style.

• Give an explicit annotation for the main function.

A type annotation is also required whenever the value returned from the IO monad is not
the unit type ().



CHAPTER 5. PACKAGES 77

Interpretation of the value returned from main

Whenever the ultimate return type of the main function is one of

IO Int

IO Bool

the wrapper method will retrieve the value and will pass it to java.lang.System.exit

when it is an Int. If it is Bool instead, the wrapper method passes 0 for true and 1 for
false to the exit method.

Here is a program that implements the Unix utiliy false in Frege:

main :: IO Bool

main = return false

If the return type is something else, no explicit return is performed.

Example: This example assumes that the Frege runtime and compiler is contained
in a file frege.jar that resides in the lib/ subdirectory of the users home directory
and that the PATH environment variable is set so that the java and javac commands
can be accessed.

$ cat Hello.fr
package test.World where
main (g: ) = println (”Hello ” ++ g ++ ”!”)
main args = println ”Hello World!”
$ java -jar ˜/lib/frege.jar Hello.fr # compile the package
runnning: javac -cp ˜/lib/frege.jar:. ./test/World.java
$ java -cp ˜/lib/frege.jar:. test.World # run it by passing package name
Hello World!
$ java -cp ˜/lib/frege.jar:. test.World again # pass an argument
Hello again!
$

Difference to Haskell 98/2010: The main value is either itself an IO action, or a
function that takes a list of strings and returns an IO action. There is no library
function to access the command line arguments. A main function can appear in any
package. In fact, a program can consist of multiple packages each defining its own
main function. To run a specific main one passes the package name to an appropriate
JVM launcher. When the main function has an ultimate return type of IO Int or
IO Bool, the returned value will determine the exit status when run through the
static void main() method.
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5.2 Packages and Namespaces

The package declaration creates the namespace wherein all top level declarations of the
package live. The namespace has itself a name, it is the last component of the package
name. Namespace names must start with an uppercase letter. They will never conflict
with names of other kinds like type names or value constructors. However, having a
namespace and a type with the same name N can lead to confusions, as explained earlier
in the section that deals with qualified names.

All items defined at the top level of the current namespace can be accessed with unqualified
names or with a name qualified by the namespace.

5.3 Importing Packages

A package may import any other previously compiled package with an import declaration.
A compiled package contains information about all non private type aliases, type classes,
instances, data types, functions and values defined in it in a form that allows for quick
reconstruction of the packages symbol table. Hence, during compilation of the importing
package the compiler will know the names, kinds and types of the imported items and
can generate appropriate code to access them.

importdcl :

import packagename [ [ as ]namespace ] [ public ] importlist
importlist :

[ hiding ] ( [ importspec{, importspec} ] )
importspec:

[ public ] importitem [ alias ]
importitem:

varid | conid[ members ] | symop | conid.varid | conid.conid | conid.symop
alias :

varid | conid | symop (must match the aliased item)

members:
( [ memspec{, memspec} ] )

memspec:

[ public ] member [ alias ]
member :

varid | symop | conid
namespace:

conid

Difference to Haskell 98/2010: There is no special syntax for so-called ”qualified”
imports. In Frege, all imports are basically qualified, as is explained in the following
pages.
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Import declarations are processed in the order they occur in the program text. However,
their placement relative to other declarations is immaterial. Even so, it is considered good
style to write all import declarations somewhere near the top of the program.

An import encloses the following steps:

• The class file corresponding to the imported package is loaded. The class file must
exist in the current class path or in a path given with compiler command line flags.

• A new namespace is created for the import. If no name for the name space was
specified, the last component of the given package name is used.

• Items defined in the imported package are extracted from the class file data and
their definition is stored in the new name space.

• The import list will be processed to give certain imported items names in the current
namespace, so that they may be accessed with unqualified names. This process of
linking is laid out in the following sections.

It is not possible to import a Java class file that does not result from the compilation of
a Frege source file.

Different packages must be imported into different name spaces.

It is possible to make use of types or classes that have no valid name in the current
package. This is the case, for instance, when a package A declares a data type, package
B imports this type and defines functions that use this type and package C imports and
uses that function from B, but does not import A. Apart from the fact that some type
signatures can’t be written in C this is no problem.

5.3.1 Import lists

All non private definitions (i.e. functions, values, types, constructors, type classes and
operators) of the imported package will be accessible in the importing package through
identifiers qualified with the associated name space name.

Instances play a special role insofar as they cannot be named and hence cannot appear
in import lists. Therefore they will be automatically known, no matter how the import
list looks like.

Often one wishes to name some imported items without qualifiers. This can be accom-
plished by listing those items in the import list:

Example: import math.Rational as R (gcd, Rat)

This causes the function Rational.gcd to be known under the name gcd in the current
package. Also, if there is a constructor or type Rat in math.Rational, it will be known
in the current package. Both items can still be named as R.gcd or R.Rat.
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A value constructor may have the same name as a type constructor, type alias or class.
It follows that mentioning an unqualified constructor name in an import list can be
ambiguous. This is resolved in favor of type names, i.e. if a type, alias or class with
that name exists in the imported package, it will be linked to the current namespace. To
import a value constructor with an ambiguous name, it must be qualified with its type
name in the import list.

Example:
package Imported where
class C where ...
data Notes = C | D | E | F | G | H | A | B

package Importing where
import Imported (C) – class C
import Imported (Notes) – data type Notes and its public constructors
import Imported (Notes.C) – just the data constructor

Controlling import of data constructors and members A class name in an import
list can be followed by a list of class operations that should be available in the namespace
of the importing package. If the list is empty, only the class name itself is imported, access
to the class operations are possible through names that are qualified with the class name.
If the list is missing, all public class operations are available.

Likewise, a type name in an import list can be followed by a list of names declared in
that type that should be linked to the namespace of the importing package in addition
to the type name itself. If the list is empty, no additional names are linked. If the list is
missing, all public constructor names are linked.

This feature can be used to prevent unwanted linking of constructor names to avoid name
clashes, like in the following example:

Example:
package A where data T1 = T ....

package B where data T2 = T ...

package C where
import A( T1() )
import B( T2 ) – hence T means T2.T

Like with items in the import list, data members can be renamed or re-exported.

An alternative solution for the constructor name clash problem would be:
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Example:
package A where data T1 = T ....

package B where data T2 = T ...

package C where
import A( T1( T TA) ) – TA means A.T1.T
import B( T2( T TB) ) – TB means B.T2.T

Empty import list If the import list is empty, no named items are linked to the current
namespace. Nevertheless, as before, all items of the imported package can be accessed
with qualified names.

5.3.2 Importing all public items

In addition, it is possible to link all public definitions of a package into the namespace of
the importing package by not giving an import list at all.

This will not make available the items declared protected. Protected items are linked
only when explicitly mentioned in an import list.

Example:
import math.Rational

5.3.3 Renaming on import

An item can be put in the current namespace with a different name. However, conids can
only be aliased to conids while varids and symops can not be aliased to conids.

This is useful to avoid name clashes or to adapt naming conventions1.

Multiple aliases are possible for a single item.

Example:
import math.Rational (gcd greatestCommonDivisor, gcd ggT)

It is important to understand that the qualified name of an imported item remains unaf-
fected by renaming. All names created by imports in the current namespace are merely
symbolic links to the original item. Hence, after the import of the example, the names
Rational.gcd, greatestCommonDivisor and ggT reference the same item.

1 Be aware, though, that error messages may report the original qualified name.
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5.3.4 Re-exporting imported items

It is possible to have a packages re-export all or some of its imported items along with
the items declared in the package itself, if any2, so that importing packages can import
many related items from possibly many different packages with one import.

A library designer can use this feature, especially in combination with item renaming, to
hide implementation details of his library, such as package names, where and under what
name exactly an item is defined etc., by providing a single package defining the ”official”
interface of the library. If the library is redesigned later, the package defining the interface
can be adapted accordingly so that backwards source compatibility can be maintained3.

To re-export a single item, one writes public before its name in the import list. Note
that it is the alias name that will be exported for renamed items. To re-export all items
in the import list or just all public items when there is no import list, one writes public
after the package name.

Example:
package x.y.API where
import x.y.z.Sub1 (public creat create, public fold reduce)
import x.y.z.Sub2 public hiding (deprecated1, deprecated2, ...)
import x.y.contributed.byXY.Utilities public

package XYClient where
import x.y.API
– makes available create, reduce, non deprecated items from Sub2
– and public utiliities from contributor XY, but the client need not
– know all those details.

5.3.5 Importing all but some items

If the import list is preceded by the word ”hiding”, all public items but the named ones
are made available for unqualified access in the current namespace.

Example: import math.Rational hiding(gcd)

Note that for the names listed in a hiding list, the re-export and the renaming syntax do
not make sense. Anyway, it is still possible to re-export the items effectively linked this
way by placing a ”public” before the ”hiding”.

2 It is perfectly legal for a package to contain nothing but import declarations.
3 However, binary backwards compatibility can not be achieved this way, because on the Java and

JVM level any class, method, etc. has only one unambiguous name.
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5.3.6 Name clashes

It is permitted to overwrite a previously imported name through a declaration or binding.
All unqualified uses of that name are resolved to refer to the declaration from the current
package, but the imported item is still available under its qualified name. The compiler
shall emit a warning in such cases.

It is also possible that an import overwrites an item in the current namespace that was
introduced through a previous import. The compiler must emit a warning in such cases.
The unqualified name will link to the last imported item.

It is advised to use the import features described above to avoid such clashes.

5.3.7 Aliasing the package name

One can specify the name of the namespace into which items will be imported. This
makes it possible to disambiguate the namespaces for imported packages.

Consider the case that one needs two packages whose namespace names would come out
equal, as in

Example:
import binary.Tree
import balanced.Tree – will fail, Tree is already a name space

Here, the second import would fail, because namespace Tree already exists. The situation
can be remedied like so:

Example:
import binary.Tree
import balanced.Tree as AVL – all items go in namespace AVL

5.3.8 Multiple import

One can import any package more than once, with different import lists or different
namespaces.

Example:
import frege.List public(map, take)
import frege.List(sortBy)
import frege.List() L – by the way: ”as” is optional

This would be equivalent to
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Example:
import frege.List(public map, public take, sortBy)
import frege.List() as L

All public items of package frege.List can be named with qualifier L. or List. and the
names of the functions List.map, List.sortBy and List.take don’t need to be qualified.
In addition, List.map and List.take are re-exported, so that they will be known in every
package that imports this one unrestricted.

Name clashes may occur if the effective import lists have elements in common.

5.3.9 Implicit Prelude import

The compiler behaves as if the top declarations in the source code contained the import
declaration

import frege.Prelude()

before all other import declarations. This ensures that all prelude definitions can be
accessed through namespace Prelude and, at the same time, that no other package my
be imported as Prelude.

In addition, unless a user provided import clause explicitly imports package frege.Prelude,
the compiler automatically provides a

import frege.Prelude

before all other import declarations. This results in the desired behaviour, namely that
all common operators, types and so on can be used with unqualified names.

5.3.10 Rules for Namespaces

When a package is imported, all symbols defined in that package are made available and
can then be used in the importing package. However, this does not apply to namespace
names themselves. Namespaces exist only during compilation and are a means to organize
the symbol table.

Therefore, namespaces used in the source code of the imported package cannot be refer-
enced in importing packages.

5.3.11 Importing packages with instances

Ambiguities arise when an imported package contains an instance for the same type class
and data constructor as another imported package.
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In such cases, the compiler will use the instance that was imported last and for all con-
flicting instances a warning message like

Example: S.fr:3: data type A.A is already an instance of class Show (B.Show A
introduced on line 4)

will be emitted. The message informs about the position of the import that contains a
conflicting instance (here line 3 in source file S.fr), the data type that was instantiated
(A.A), the type class this instance was for (Show) and the internal name of the already
existing instance (B.Show A) and where it was introduced (on line 4). Hence, in this
package, the instance Show A from the package that is associated with namespace B

whose import declaration can be found at line 4 is used.



Chapter 6

Predefined Types and Classes

The Frege Prelude contains predefined classes, types and functions that are implicitly
imported into every Frege program. In this chapter, we describe the types and classes
found in the Prelude. Most functions are not described in detail here.

6.1 Standard Frege Types

These types are defined by the Frege Prelude. Numeric types are described in section 6.3.
When appropriate, the Frege definition of the type is given. Some definitions may not
be completely valid on syntactic grounds but they faithfully convey the meaning of the
underlying type.

6.1.1 Booleans

data Bool = pure native boolean

The boolean type Bool is the primitive Java type boolean. The boolean values are
represented by two keywords, false and true, see also subsection 2.7.1.

Basic boolean functions are && (and), || (or), and not. The unary operator ! is an alias
for not. These operations are implemented in such a way that the corresponding Java
operator is employed. This could promote unwanted strictness from the second operands
of && and ||. For such cases, functions und and oder are provided that are lazy in their
second operands.

The name otherwise is defined as true to make guarded expressions more readable.

Bool has instances for Show, Eq, Ord, Enum and Bounded.

Difference to Haskell 98/2010: The constructors True and False do not exist.
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6.1.2 Characters

data Char = pure native char

The character type Char is the primitive Java type char, whose values, according to the
Java Language Specification are 16-bit unsigned integers representing UTF-16 code units.
The lexical syntax for characters is defined in section 2.7.3; character literals denote values
of type Char. Type Char is an instance of the classes Show, Eq, Ord, Enum and Bounded.

6.1.3 Strings

data String = pure native java.lang.String

The type String is the Java type java.lang.String. For most java methods that work
on strings, there is a corresponding native function binding.

String is an instance of the classes Show, Eq, Ord, Empty, ListLike and ListSource. The
latter one allows string values to stand on the right side of the arrow in list comprehension
generators, thus providing silent conversion to list of characters.

Further operations are explicit conversion to and from list of characters with unpacked

and packed, conversion to various numeric types and access to individual characters of a
string with integer indexes.

Difference to Haskell 98/2010: Strings are not list of characters, though conver-
sion functions to and from lists exist.

6.1.4 Predefined Algebraic Data Types

Lists

data [a] = [] | a : [a] -- this syntax is not really allowed

Lists are an algebraic data type of two constructors, although with special syntactic
support, as described in subsection 3.1.4. The first constructor is the null list, written []
(”nil”), and the second is : (”cons”). The module frege.prelude.PreludeList, whose
definitions are automatically imported in every Frege program unless prevented by the
user, defines many standard list functions.

Lists are an instance of classes Show, Eq, Ord, Empty, ListLike, ListSource, Monad and
Functor.
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Tuples

The tuple types are convenient product types for grouping a fixed number of values that
can have different types. Tuple types with 2 to 26 components are predefined. Special
syntactic support for tuples is described in subsection 3.1.3.

The following functions are defined for pairs (2-tuples): fst, snd, curry, and uncurry.
Similar functions are not predefined for larger tuple.

The Prelude provides instances for classes Show, Eq, Ord and Bounded for pairs and 3-
tuples. Instances of the same classes for tuple sizes 4 to 7 are predefined in package
frege.data.Tuples.

The zip/unzip family of functions is also available by default for tuples of size 2 and 3.
The package frege.data.List makes them available for tuples up to size 7.

The Unit Datatype

data () = () -- pseudo syntax

The unit type () is an enumeration with just one constant, which is also named (). The
unit type is often the result type of impure functions that exist for their side effects.

6.1.5 Function Types

Functions are an abstract type: no constructors directly create functional values. The
following simple functions are found in the Prelude: id, const, (.), flip, ($).

6.1.6 ST, IO and RealWorld

abstract data ST s a = ST (s -> a)

where run :: forall a. (forall s.ST s a) -> a

abstract data RealWorld = RealWorld

type IO = ST RealWorld

The abstract ST type encapsulates impure operations, for an in depth discussion see [10].

In short, it is possible to model program actions that are impure only locally, but can
be regarded as overall pure. For example, an array could be built from a list, and then
computations that need fast indexing could be performed. Once the result is computed,
the array would be gone and garbage collected.

Such computations can be performed with the help of the ST.run function. Note the
higher rank polymorphic type of that function, which not only prevents execution for ST
actions that are not polymorphic in the type argument s, but also escape of impure values
that have the s in their type.
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The very same mechanism is used for input/output. Functions with return type IO a

produce ST RealWorld a values that can not be run with ST.run.

6.1.7 Exceptions

Frege uses the Java exception facilities to model undefined or erroneous behavior.

The function error, when applied to a string and evaluated, constructs and throws such
exceptions. Pattern matches and pattern guards can fail to match, the compiler adds
code that raises exceptions in such cases.

Likewise, exceptions can be thrown in pure native code. It is possible, and, in the case
of so called checked exceptions1 unavoidable to catch such exceptions and return them
instead of the expected result.

Last but not least, the Java virtual machine can throw exceptions.

Exceptions can be catched, raised and acted upon in ST actions, including native impure
code.

There is support for creating custom frege exception types. not yet im-
plemented

6.1.8 Other Types

data Maybe a = Nothing | Just a

derive Eq (Maybe a); derive Ord (Maybe a); derive Show (Maybe a)

data Either a b = Left a | Right b

derive Eq (Either a b); derive Ord (Either a b);

derive Show (Either a b)

data Ordering = Lt | Eq | Gt

derive Enum Ordering

derive Show Ordering

The type Ordering is used by (<=>) in class Ord. The Prelude provides functions maybe
and either.

An alternate syntax is supported for nested Either types.

type (a|b) = Either a b

type (a|b|c) = Either (Either a b) c

type (a|b|c|....|z) = Either (Either (Either (Either ...))) z

The | is left associative, and acts like an infix Either type constructor. Hence the type
(t1|t2|t3) is the same as Either (Either t1 t2) t3.

1see [6, §11.2]
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Note that a nested Either type must appear in parantheses, but inside the outer pair of
parentheses arbitrary many Either alternatives can be written.

A value v of the above type could be deconstructed most easily with the either function
like

Example: (fa ‘ either‘ fb ‘ either‘ fc) v

where the infix either operators correspond to the | type constructors, and the positions
of the fi correspond to the values of type ti.

6.2 Standard Frege Classes

TODO: To be written later.

6.3 Numbers

TODO: To be written later.



Chapter 7

Input/Output

TODO: write it
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Chapter 8

Native Interface

TODO: This chapter is not yet complete.

In this chapter, we describe how native data types and native functions work, establish
some conventions for the work with mutable data types and give a receipt for creating
correct native function declarations.

8.1 Purpose of the Native Interface

The language constructs introduced so far make it possible to write pure functional pro-
grams. Pure functional programs consist of pure functions that work on immutable data.
For the purpose of this discussion, we define these terms as follows:

pure function A function f is pure, if the following holds:

• f computes the same result when given the same argument values during exe-
cution of the program that contains f .

• The result must only depend on the values of the arguments, immutable data
and other pure functions. Specifically, it may not depend on mutable state, on
time or the current state of the input/output system.

• Evaluation of f must not cause any side effect that could be observed in the
program that evaluates f . It must not change the state of the real world (such
as magnetic properties of particles on the surface of a rotating disc).

This definition is not as rigid as others that can be found in the literature or in the
Internet. For example, we may regard a function

getenv :: String → String

as pure, even if it depends on some hidden data structure that maps string values
to other string values (the environment), provided that it is guaranteed that this
mapping remains constant during program execution.
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Regarding side effects, we exclude only effects in the real world (input/output, but
not physical effects in the CPU or memory chips) and effects that are observable by
the program that caused it. For example, evaluation of the expression

s1 ++ s2

where s1 and s2 are string values, will cause creation of a new Java String object
and mutation of some memory where the new string’s data is stored, this could
even trigger a garbage collector run with mutation of huge portions of the program’s
memory. Yet, all this happens behind the scene and is observable only by another
program such as a debugger or run time monitor, if at all.

We also do not insist that application of a pure function with the same argument
values must return the same value in different executions of the program1.

immutable values A value is immutable if there are no means to observably change it
or any values it contains or references.

1If we did insist on equal return values for application of a pure function with equal arguments in
different executions of a program, we could not use any functionality provided by the underlying platform,
which is in our case Java and the Java Virtual Machine. For we could not guarantee that certain
constants or pure methods we use will be unchanged in the next update or version of that component.

Alternatively, one could of course define the term program in such a way that it encloses a specific
version of the Java runtime system (and in turn specific versions of the libraries used by Java, and the
libraries used by those libraries down to the operating system and even the hardware). But then, the
term program would become almost meaningless. Suppose, for example, that some chip producer finds a
bug in one of the floating point units that he produces, which causes incorrect results to be returned by
certain floating point divisions. Suppose further, that the faulty CPU chip is replaced by a fixed one in
the computer used by an extremely rigid functional purist, who insists that functions must produce the
same value across different program executions. Then, this person must either admit that some function
he wrote was not pure (because it suddenly produces different results for the same argument values) or
he must regard his program as having changed. He could, for instance, talk about how much more exact
results ”this new version of my program” produces, despite nobody hasn’t changed a single bit on the
hard disk!

This argumentation is not invalidated by pointing out that the faulty CPU did not behave according
to their specification. It remains the fact that results of computer functions depend on the computing
environment they are executed in, no matter if one likes it or not.

It is probably more rational to acknowledge that the idea of a function that depends on nothing but its
arguments is a nice, but utterly idealistic one that must necessarily abstract away many aspects of reality.
In practice, the result of a function \x → x/3145727.0, when defined in some computer language and
executed in some computing environment depends not only on x, but also on how the floating point unit
works, how exact the divisor can be represented in floating point, in short, it depends on the computing
environment where it is run.

We do not understand the concept of functional purity so narrowly that we require the same result
of a pure function in all thinkable computing environments. Rather, we admit realistically that results
may be different in different computing environments. The session environment (the mapping of values
printed by the command env in a Unix session; similar features exist in other operating systems) is a
part of the computing environment that is constant during program execution (in Java programs, that
is). Hence, the result of a pure function in a program may depend on environment variables, according to
our definition. It may depend on the arguments passed on the command line. Yet, it may not depend on
the current directory, for obtaining the name of it or using it presupposes input/output to be performed.
It may also not depend on Javas system properties, for those can be changed during program execution.
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This is deliberately vague in view of the difficulties in Java when it comes to en-
forcing immutability. 2

The native interface allows to call Java methods and use Java data in Frege programs.
Because Java reference values may be mutable and Java methods may not be pure func-
tions, it provides means to differentiate between pure vs. impure methods and mutable
vs. immutable values. Unfortunately, there exists no reliable general way to establish
purity of Java methods or immutability of Java values. Therefore, the Frege compiler
must rely on the truthfulness of the annotations the programmer supplies.

Difference to Haskell 98/2010: The native interface in Frege corresponds to
the Foreign Function Interface in Haskell 2010 ([3, Chapter 8]), but differs in the
following points:

• There are no foreign exports, because all items defined in a Frege module
that are visible in other Frege modules are also visible to any Java program
anyway.

• Foreign imports (i.e. native declarations) always refer to items known in the
Java virtual machine. The source language that was used to create those
classes, interfaces or methods is immaterial.

• There are no calling conventions to choose from.

• Some simple marshaling between Frege data and JVM data is supported.

8.2 Terminology and Definitions

Let’s recall the general forms of native data and function declarations:

data T t1 · · · ti = native J
native v j :: t

We call T a native type and J the java type associated with it. We also say that the Frege
type (T t1 · · · ti) denotes the Java type J . In this chapter, we’ll use the abbreviations

jt(T) for the Java type associated with or denoted by T and ft(J)for the Frege type
that denotes J.

If T is associated with one of byte, boolean, char, short, int, long, float or double,
then T denotes a primitive type, otherwise it denotes a reference type.

We call v a native value and j the java item associated with it. If t is of the form
t1 → · · · → tk → tR, where tR is not itself a function type, we call v a native function

2It is, for example.possible to break intended immutability with the help of the reflection API.
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with arity k (k ≥ 1) and return type tR. The ti are called argument types. For v’s that
are not native functions, the arity is 0 and the return type is t.

J and j are snippets of Java code and can be specified as identifiers, qualified identifiers
or operator symbols as long as this does not violate the Frege lexical syntax. In all
other cases the code snippets can be given in the form of string literals. In the following
sections, we will frequently use the value of j or just j. This is to be understood as the
string that is described by the string literal, not the string literal itself.

8.3 Mapping between Frege and Java Types

Since all Frege types must be mapped to Java types eventually, it is the case that every
Frege type of kind * denotes exactly one Java type. The converse, however, is not true,
since multiple Frege types may map to one and the same Java type3 and in addition,

ft(J) is only defined for those Java types that are made available to Frege with a native
data definition.

The Figure 8.1 shows a recommended mapping.

Type T jt(T) Comment

a java.lang.Object nothing is known about values
of type a

a → b frege.runtime.Lambda

Bool boolean

Int int and similarly for all other
primitive types

String java.lang.String

Integer java.math.BigInteger

[a] frege.prelude.PreludeBase.TList

(a, b) frege.prelude.PreludeBase.TTuple2 and similarly for tuples with
more components

JArray a java.lang.Object generic array

JArray T jt(T)[] array of T

enumerations short

algebraic M .TT where T is defined in mod-
ule M

Figure 8.1: Recommended type mapping

3Implementations are free to erase type arguments, so that, for example Maybe String and Maybe

Int may denote the same Java type. In fact, since Java’s type system is not powerful enough to deal
with higher kinded types, it is very likely that type arguments will be erased.
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8.4 Types with Special Meaning

The following types have a special meaning in the type signatures of native values and
functions. They are used to require special handling of argument or return values (mar-
shalling).

As far as Frege is concerned, the corresponding values have exactly the declared types.
The Java type, however, can be different.

() The unit type as argument type indicates an empty argument list for the Java method
that implements the native function. The unit type is only allowed in argument
position if the type is of the form () → tR. i.e. when the unit value is the only
argument4.

The unit type as return type indicates that the native function is implemented by a
Java method that is declared void. The compiler supplies a wrapper that invokes
the method and returns the value ().

Maybe a A Maybe type in argument position indicates that the Java method that im-
plements a native function takes null values for the corresponding argument. The
generated code will pass null for arguments with value Nothing and x for arguments
of the form (Just x).

A Maybe type as return type indicates that the implementing method may return
null values. The return value null will be mapped to Nothing and any other
return value j to (Just j).

It therefore holds that jt(Maybe a) in native method’s arguments or return values

is jt(a).
Java provides classes for boxed primitive values, like for instance java.lang.Float.
If one needs to use a method that has an argument of a boxed type, one can use any
Frege type that is associated with the corresponding primitive type (i.e. Float).
This works because Java performs autoboxing. However, if one ever needs to pass
null, the corresponding argument type must be wrapped in Maybe (i.e. Maybe Int).
For return types, the autoboxing works in a similar way. Yet, whenever it is not
provably impossible that the method ever returns null, one must declare the return
type as a Maybe type. Failure to do so may cause null pointer exceptions to occur
at runtime.

The type wrapped by Maybe must not be any of the special types described here.

Either x t This type is to be used as return type instead of t when the implementing
method is declared to throw checked exceptions or if it is known that it throws other
exceptions that one needs to catch.

The x must be an exception descriptor whose definition follows along with two other
concepts we will be using:

4Note that instance methods always have at least one argument, the so-called receiver. Hence the
Frege type of an instance method may never be ()→ tR
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• If jt(x) is some Java type that implements java.lang.Throwable, then and
only then is x a throwable type.

• If x is a throwable type, it is a valid exception descriptor.

• Let y be an exception descriptor and t a throwable type. Then Either y t is
a valid exception descriptor.

• All other types are not exception descriptors.

• A type of the form Either x t where x is an exception descriptor and t is not
an exception descriptor is called a catching type.

The nested Either syntax comes in quite handy here:

Example:

data BadCharset = pure native

java.nio.charset.IllegalCharsetNameException

data UnsopportedCharset = pure native

java.nio.charset.UnsupportedCharsetException

data CharSet = pure native java.nio.charset.Charset where

pure native csForName java.nio.charset.Charset.forName

:: String -> (BadCharset|UnsupportedCharset|CharSet)

Code generation will create a wrapper method containing a try statement with
catch clauses that catch the exceptions declared in x in left to right order5.

Note that the Java language enforces certain rules for exception handling (see [6,
§11]). The following points should be observed to avoid Java compiler errors:

• The catching type must list all checked exceptions that the method may throw.

• The catching type must not list any exception the method may not throw.

• In the catching type, more specific exceptions (in terms of the Java exception
class hierarchy, see [6, §11.5]) must occur further left than less specific ones.

If the wrapper indeed catches one of the interesting exceptions, it constructs an
appropriate Left value. Otherwise, if a value v is returned from the native method,
the wrapper returns (Right vm), where vm is the value after marshalling of v, which
takes place in cases where t is one of the types with special meaning as explained
before.

A catching type is not valid as argument type for a native function.

t may not be another catching type nor a ST or IO type.

5 The order is the same, regardless of notation of the type as (Either (Either E1 E2) R) or
(E1|E2|R). It could appear to be different only if one used type aliases like type Rehtie a b = Either

b a, however, it is the order in the expanded form that counts.
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ST s t This type must be used when the implementing method uses or produces mutable
data. ST must be the outermost type constructor in the result type.

The compiler creates an appropriate wrapper function that constructs a ST action,
which, when executed, runs the native method and returns its value in the STmonad.
Native functions declared this way can also be used in the IO monad.

IO t This type must be used when the implementing method has any side effects. IO

must be the outermost type constructor in the result type. The compiler creates an
appropriate wrapper function that constructs an IO action, which, when executed,
runs the native method and returns its value in the IO monad.

For an overview of possible return values of native functions see Figure 8.2.

8.5 Exception Handling

There are two mechanisms that deal with exceptions thrown from native functions. The
first mechanism uses catching types as described in the previous section.

The idea behind the catching types is to encode the actual return value and the catched
exceptions in a value of type Either. This makes it in effect impossible to overlook that
the function may throw exceptions. The user has many choices to get at the actual return
value: case expressions, the either function, or higher order functions like fmap. But
he cannot pretend that the function just returns a value without taking the possibly of
thrown exceptions into account.

This approach is fine in many cases, but may be a bit laborious in others. For example,
when doing input/output using Java APIs, almost every function will potentially throw
some incarnation of java.io.IOException. It is neither desirable nor even possible to
ignore such exceptions, and this could lead to a programming style where every function
call is followed by long winded error handling. In the end, even small sequences of I/O
actions could result in deeply nested case expressions. Or the code could get extremely
fragmented along the lines of:
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Example:

processFile path = do

openFile path >>= either handleOpenException continueRead

continueRead f = do

readLine f >>= either handleNoLine (processLine f)

processLine f ln = do

result1 <- do something with the line

readLine f >>= either handleNoOtherLine (processRest f result1)

processRest f res1 ln2 = do ....

handleOpenException ex = do ...

handleNoLine ex = do ....

handleNoOtherLine ex = do ....

Should a function throw different exceptions that require separate handling, it will get
even more complex.

Therefore, there is another approach, that allows to catch and handle exceptions explicitly
in the ST or IO monads6.

The explicit approach rests on the idea that the return types of native functions are
left as they are, except for the ST or IO wrapper. This requires, however, that checked
exceptions, which are part of Java method signatures must be eliminated, since Frege
function types carry no information about them.

Put differently, a Java method that invokes a method whose signature states that checked
exceptions may be thrown must do so either inside of a throw/catch statement where the
checked exception is catched, or the calling method must itself state that it throws the
exception.

Neither are there statements in Frege, let alone try/catch statements, nor are exceptions
part of the contract of Frege functions. Hence, the only possibility is to catch the
exceptions where they arise, wrap them in unchecked exceptions and re-throw the latter
ones, which can be done without changing the method’s signature.

To achieve this, the following form of a native function declaration must be used:

native v j:: t throws x1, · · ·, xk

Here, t is the function type whose return type must be a ST or IO type, and the xi (i ≥ 1)
are throwable types that denote Java exceptions to re-throw. The generated wrapper will
create a try/catch statement that catches, wraps and re-throws all exceptions denoted by
the xi.

6The details of how to use the key functions catch and finally and how to write exception handlers
can be found in the API documentation.



CHAPTER 8. NATIVE INTERFACE 100

Declaration of Throwable Types

Throwable types are to be declared like in the following example:

Example:

data IOException = pure native java.io.IOException

derive Exceptional IOException

The declarations shown are imported from package frege.java.IO and are thus available
in every Frege program. However, not all exceptions from the JRE may be predeclared,
and exceptions from 3rd party libraries will certainly not be predeclared.

The convention is to view throwable types as abstract, immutable tokens, hence the pure
native declaration. In addition, if one wants to catch exceptions explicitly with the
catch function, one needs to make the throwable type an instance of Exceptional. This
is because the type of catch is

catch :: Exceptional e => IO a -> (e -> IO a) -> IO a

where the second argument is the exception handler. Hence, to use an exception handler
that handles exception e with catch, e must be an instance of type class Exceptional.

Rules for Native Functions that Throw Exceptions

• The set of checked exceptions declared in the signature of the Java method must be
a subset of the throwable types in the native declaration, otherwise the generated
Java code will not compile. Put differently, all possible checked exceptions must be
considered in one way or the other by the Frege declaration.

• Catching types and the throws clause can be combined, as long as the set of ex-
ceptions handled with catching types is disjunct from the set of exceptions named
in the throws clause. The exceptions occurring in the catching type will never be
thrown, but wrapped in the Either value.

• Catching types as well as throws clauses can contain additional unchecked excep-
tions.

• Native functions with throws clauses allow one to deliberately ignore exceptions,
even checked ones. Needless to say, except for toy programs, this is not acceptable,
as any unhandled re-thrown exception will terminate the thread where it was raised.
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8.6 Mutable and immutable Java data

Most Java objects are potentially mutable. However, from the Frege point of view the
question is whether objects of a certain class can be mutated with the operations that
are available. If one restricts oneself to non-mutating native functions, a Java class can
be considered immutable for the purpose at hand.

An example for such a border case is java.math.BigInteger, which is technically not
immutable at all, yet offers a quite functional interface. With the understanding that ma-
licious Java code could manipulate big integer values, this class is regarded immutable in
Frege, and serves as implementation for type Integer. Of course, none of the operations
provided for Integer does manipulate the underlying Java object in any observable way.

It follows a discussion of the three main categories of native data that are recognized by
the Frege system.

8.6.1 Immutable Only Data

Native data types declared with the pure native keywords are regarded as truly im-
mutable. For such data, it doesn’t matter, if a reference to one and the same object is
shared between Java and Frege code or even between different threads.

There are no restrictions on the use of values of such types.

Note: The behavior and result of programs that incorrectly declare mutable Java
types as immutable is undefined. It is a programming error the Frege compiler
unfortunately cannot detect.

8.6.2 Mutable/Immutable Data and the ST Monad

The normal case are native data that are (by the very nature of the Java language)
mutable, but can nevertheless be used to model overall pure functions. The corresponding
data declaration for such types uses the keyword native without additional keywords.

A characteristic property of Java classes that belong to this category is that they offer a
mix of pure and impure methods.

Common examples are arrays, collections and types like java.lang.StringBuilder, a
mechanism for efficient construction of character strings.

The problem in Frege is to distinguish between values (i.e. Java objects) whose refer-
ences could be aliased and held in parts of the code that is not written in Frege (like
library code) or even in different threads and, on the other side, ”safe” values that are
only known in the Frege realm.

The solution is to have a different compile time type for values that are actually mutable
and values that are safe. Specifically, we will wrap mutable values of type M in the
following type:
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abstract data Mutable s m = Mutable m

Observe that Mutable itself is declared abstract, which makes it impossible to actually
create or deconstruct such a value in Frege code, as the value constructor is inaccessible.

Furthermore, the following rules will be enforced for every native type M that is not pure:

1. The only way M can appear in the return type of a native function is Mutable s M

2. A pure native function may not return Mutable s M

3. The only way M can appear in the argument type of an impure native function is
Mutable s M

4. The phantom types of type constructors ST and Mutable must all be the same in
the type of a native method. The phantom type is either a type variable or the
constant RealWorld.

5. A pure function must not normally have arguments of type Mutable s M .

6. A type Mutable s a where a is not a native type or was declared pure native or
mutable native (see subsection 8.6.3) is illegal in the type of native functions.

Rule 1, 2 and 4 make sure that M values can be created only in the ST or IO monad,
and that their type appears to be Mutable s m, where s is the appropriate phantom
type. This means also that such values cannot escape from the corresponding monad.
For the IO monad, this is guaranteed because nothing can escape it. For the ST monad,
the phantom type prevents execution for any ST action that has a type like

ST s (Mutable s M)

from pure code (yet, there is nothing wrong per se with such a ST action: it could be
used in another ST/IO action, for example).

The motivation for rule 5 is the following: From what has been said in the paragraphs
above it should be clear that mutable values can only appear in the ST monad. If we
allowed passing mutable data to pure functions (in a let clause, say), their result would
depend on whether the monadic code around it actually mutates the value or not. Con-
sider the following slightly contrived example:
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Example:

data Foo = native some.Foo where

native new :: () -> ST s (Mutable s Foo)

native setBar :: Mutable s Foo -> Int -> ST s ()

pure native getBar :: Mutable s Foo -> Int -- WRONG!!!

bad :: ST s Int

bad = do

foo <- Foo.new () -- create a value

foo.setBar 42 -- set the property

let r = foo.getBar -- seemingly pure getter

foo.setBar 43 -- reset the property again

return r

There is no way to tell what the value of (ST.run bad) should be. The let, judging
by its data dependencies, could get floated left, so that its code in the compiled output
appears before the first setBar. Or the compiler could in-line the definition of r in the
argument of return. Or it could leave it as is. In any case, there is no need to evaluate
foo.getBar right away. The only thing that can be said is that the result, should it be
evaluated at all, would depend on the then current state of the object denoted by foo.

The crucial point here is the declaration of the getter method that wants to make us
believe that a getter method applied to a mutable object could be pure. In the general
case, this is not so. Hence rule 5, which forbids it.

There are, however, cases where a mutable object does have invariant properties. An easy
example is getting the length of an array.

Making Safe Copies of Mutable Values

Often, mutable values are used only temporary, as is frequently the case with string
buffers. In other cases, it are precisely the methods that are pure on the condition that
the (technically) mutable value actually is not mutated any more, that interest us. In the
case of arrays, for example, it is common to initialize them (from a list, say), and then
enjoy the fast random read-only access in a pure computation.

The rules established above make sure that mutable/immutable values are properly treated.
But they do too much insofar as they do not even allow escape of a safe copy of a mutable
value yet.

For this purpose, the Mutable type has the following two functions:

freeze :: Freezable m => Mutable s m -> ST s m

thaw :: Freezable m => m -> ST s (Mutable s m)

that allow for controlled construction of safe M -values from mutable ones and vice versa.
m must have an instance for type class Freezable, whose subclasses Cloneable and
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Serializable are appropriate for Java types that implement the Java interfaces with
the same names. For instance, making a type T , that is associated with a Java type that
implements java.lang.Cloneable, an instance of Cloneable (the type class) is as easy
as stating:

instance Cloneable T

After having properly7 frozen an object, there should be only one reference through which
the copy could be mutated. But because we get this reference as M instead of Mutable s
M , we cannot pass it anymore to impure methods due to rule 3. Should one ever need to
do this, the frozen value must be thawed first using Mutable.thaw, which is supposed to
make another copy that can be mutated without affecting the still existing frozen value.

Cheating with Rule 5

As said before, there are often invariants (like array length) on mutable data that can be
expressed as pure native functions, but rule 5 forbids it. Because the whole apparatus
described here is to help get things right, not to prevent people that know what they are
doing from doing it, there is the following additional function for Mutables:

readonly :: (m -> b) -> (Mutable s m) -> ST s b

This way, we can ”lift” pure native functions to work on mutable values. The understand-
ing should be that the result must not depend on the mutable state of the object.

Note that (readonly id) can be used to coerce a mutable value to an immutable one.
This is justified in cases where the value was created locally, and one knows that no aliases
exist, and the value is henceforth to be regarded as immutable without actually copying
something.

8.6.3 Mutable Only Data

A native type M whose values would, by the rules above, appear everywhere with type
Mutable RealWorld M , is called a mutable only type. It can be declared like

data M = mutable native ...

and can appear in type signatures as just M . The compiler will then apply the rules
above as if the type was Mutable RealWorld M , with the following consequences:

• A value of type M can only be created in native functions whose return type is IO
M (due to rules 2 and 4).

7 Unfortunately, however, properly freezing is not easy in the general case. Most often, merely cloning
is not enough. Actually implementing freeze (and the counterpart thaw) requires great care.
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• If M occurs as argument of a native function, that function must have type IO a
for some type a (due to rule 3).

• Mutable.freeze is not applicable to M . The type checker expects a Mutable s m,
but the as if above concerns only sanity checks for types of native functions, the
normal typing rules will never actually unify Mutable s m with M .

• It would be possible to Mutable.thaw a value of type M , yet no native function
type can contain the type Mutable s M by rule 6, and hence nothing could be done
with the supposedly safe copy (except Mutable.freeze it again).

8.7 Pure Java methods

A pure Java method is a pure function, i.e. it has the following properties:

• Its return value depends only on its arguments, on constant data and on nothing
else.

• It has no side effects.

Dually, a function is not pure if at least one of the following holds:

1. The method performs any input or output operations.

2. The method changes data that is either visible outside of the method or influences
the outcome of subsequent invocations of any other method.

3. It matters, when or how often a method is invoked.

4. It can return different values on different invocations with identical arguments. This
can be the case when the result of the function depends on mutable state.

In Java, like in most imperative languages, the use of impure functions is widespread.
Examples for methods that are impure

1. creation or removal of files, open a file, read from or write to a file

2. any so called setter -method, that changes state of an object. Also, random number
generators that employ a hidden seed.

3. methods that depend on the time of day

4. methods that depend on default locale settings like number or date formatting that
could be changed during the runtime of a program, methods that read so called
system properties, registry settings or configuration files.
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Nevertheless, Java provides many methods and operations that are pure. Most methods
of java.lang.String are, as well as the methods of java.util.BigInteger and the
operations on primitive data types. Many object constructors and getter methods are
also pure when they create or operate on immutable values.

A pure Java method must be declared as such by starting the native declaration with
the pure keyword. It cannot have a return type ST s a or IO a.

8.8 Deriving a Frege native declaration from a Java

method signature

For every Java method signature

t name(t1 a1, t2 a2, · · ·, tn ai) throws e1, e2 · · · ek

where t is the return type, n is the fixed number of arguments 8, t1, t1, · · ·, tn are the
types of the arguments, k is the number of exceptions thrown and the ei are the respective
exceptions, the Frege type must be

() → fr when n is 0

f1 → f2 → · · · → fn → fr when n > 0 and for all i jt(fi) is ti

Finding the return type If t is void, the principal return type is (). In all other
cases, it is the Frege type that is associated with t.

TODO: continue me

8.9 Java Constructs Supported by Native Declara-

tions

Depending on the type and the form of the Java item, different Java constructs are
supported. Except for static field access expressions, native declarations introduce a
Frege item with a function type. The only special things about such native functions
are

1. that the compiler assumes that they are strict in all arguments9 so that lazy values
are never passed to native functions

8Argument lists with a variable number of arguments are not supported.
9A function is said to be strict in an argument if it with necessity evaluates to undefined if the

undefined value is passed for that argument.
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2. that their type must not have type class constraints.

In all other respects, native functions are indistinguishable from all other functions with
the same type.

8.9.1 Static Field Access Expression

Native values with arity 0 can be used to access static fields of a Java class. The corre-
sponding Frege value is computed once upon beginning of the program.

Translation: Let v be declared as

native v j :: t

where t is not a function type. Then the expression v will be compiled to the following
Java code: j

Example: Consider the following definition

native pi java.lang.Math.PI :: Double

Then the Java expression generated for pi will be

java.lang.Math.PI

The java item should be given as a fully qualified name.

8.9.2 Instance Field Access Expression

Public instance fields can be accessed with an instance field access expression.

Translation: Let v be declared as

native v ".j" :: to → tr

where neither to nor tr are function types, to is associated with a Java reference type
and j is an identifier that is valid in Java. Then the application v x will be compiled
to a field access expression on the Java object that is denoted by expression x.
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8.9.3 Method Invocation Expression

Translation: Let v be declared as

native v j :: t

where t is a function type with arity k.
An application of k arguments to v will be compiled to a method invocation, where
special types are marshalled as documented before.

If j is a simple name, the type of the first argument must be a native reference type, and
an instance method invocation with the first argument as receiver is generated.

If j is a qualified name, a static method invocation will be generated.

Like with all Frege functions, extra code will be generated to arrange for curried appli-
cations. In certain cases, depending on special return types, a wrapper method will be
created.

8.9.4 Class Instance Creation Expression

Class instances (Java objects) can be created with class instance creation expressions.

Translation: Let v be declared as

native v new :: t

where t is a function type with arity k whose return type is associated with a Java
reference type, possibly wrapped in a catching type or a ST type, but not in Maybe,
as a Java constructor cannot return null. Applications of v to k arguments will
eventually invoke the appropriate constructor of the Java class that is associated
with the return type.

8.9.5 Binary expressions

Translation: Let v be declared as

native v j :: t

where t is a function type with arity 2 and j is an operator.
An application of 2 arguments a and b to v will be compiled to a binary expression,
where the compiled a stands left of j and the compiled b stands right.

The Frege compiler cannot check that the operator is valid in Java nor that it can be
applied to arguments of the given types.
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Example:

pure native ++ + :: String -> String -> String

foo = "foo" ++ "bar"

defines the Frege operator ++. The top level binding foo is compiled to:

public final static java.lang.String foo = "foo" + "bar"

8.9.6 Unary expressions

Translation: Let v be declared as

native v j :: t

where t is a function type with arity 1 and j is an operator.
An application of an arguments a to v will be compiled to an unary expression, where
j is applied to the compiled a.

The Frege compiler cannot check that the operator is valid in Java nor that it can be
applied to an argument of the given type.

Example:

pure native not ! :: Bool -> Bool

foo x = not x

defines the Frege function not. The top level binding foo is compiled to:

public final static boolean foo(boolean arg) {
return !(arg);

}

8.9.7 Cast expressions

Translation: Let v be declared as

native v "(j)" :: t

where t is a function type with arity 1 and j is a Java type.
This works like an unary operator with the funny name (j)

The Frege compiler cannot check that the cast is valid in Java.
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Example:

pure native long2int "(int)" :: Long -> Int

foo x = long2int x

defines the Frege function long2int. The top level binding foo is compiled to:

public final static int foo(long arg) {
return (int)(arg);

}
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declared return type expected java signature example java code or

comment

() void meth(...) System.exit()1

(Ex|()) void meth(...) throws jt(Ex)2 System.arraycopy(...)1

IO () void meth(...) System.gc()

IO (Ex|()) void meth(...) throws2 ... (Thread)t.start()

Int int meth(...) (String)s.length()

String java.lang.String meth(...) (String)s.concat(...)

a3 jt(a) meth(...) general rule, note that previ-

ous 2 lines are no exceptions

Maybe Int4 java.lang.Integer meth(...) Integer.getInteger(...)

Maybe a3 jt(a) meth(...) general rule for any a that is

not a primitive type

(Ex|a)5 same as for a + throws2 ... Float.parseFloat(...)7

IO a6 same as for a System.nanoTime()8

[a]3 jt(a)[] meth(...) (String)s.split(...)9

[a]3 Iterator<jt(a)> meth(...) List<String>l.iterator(...)9

Figure 8.2: Well formed native return types

1However, the compiler can not be fooled into thinking that such a method is actually pure. Therefore,
despite the return type is well-formed, it’s still invalid. If you need a function that maps any argument
to (), consider const ()
2If the Java method actually declares checked exceptions, the return type must be a catching type or
the throws clause on the native declaration must be used.
3where a is no type with special meaning
4This works in a similar way for all other primitive types. The code generated by the compiler expects
a value of the corresponding boxed type or null. Note that, because Java does autoboxing of primitive
values, methods that return the corresponding primitive value are also allowed.
5where a is not another catching type and not an IO type
6where a is not another IO type
7in this case, a would be Float
8in this case, a would be Long
9in this case, a would be String
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Specification of Derived Instances

A derived instance is an instance that results from a derive declaration. The body of a
derived instance is derived syntactically from the definition of the associated type. Derived
instances are possible only for certain classes known to the compiler.

9.1 Derived Instances for Eq

Instances of Eq are types whose values can be compared for equality. Eq instances can be
derived for all algebraic data types.

Translation: Let P be a n-ary (n ≥ 0) type constructor for a product type with
k-ary (k ≥ 0) data constructor C:

data P u1 · · · un = C ct1 · · · ctk
Then

derive Eq (P t1 · · · tn)
is equivalent to:

instance Eq (Eq t1, · · ·, Eq tn) => (P t1 · · · tn) where
C a1 · · · ak == C b1 · · · bk =

true && a1.== b1 && · · · && ak.== bk
hashCode x = · · ·

The generated expression for the == operator returns true if all subcomponents of the left
operand are pairwise equal with the corresponding subcomponents of the right operand,
otherwise the result is false.

Note that the special case k = 0 is trivial: such a type has only one value C and the
derived == returns always true.

The generated expression for hashCode computes a value of type Int suitable for use in
hash tables and similar data structures. In the process of doing so, all sub-components of
the value will be evaluated recursively. The result is undefined for infinite values.

112
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The case gets only marginally more complex with sum types.

Translation: Let S be a n-ary (n ≥ 0) type constructor for a sum type with m
(m ≥ 2) data constructors C1, · · · , Cm and arities k1, · · · , km:

data S u1 · · · un = C1 ct11 · · · ctk1 | · · · | Cm ctm1 · · · ctkm
Then

derive Eq (S t1 · · · tn)
is equivalent to:

instance Eq (Eq t1, · · ·, Eq tn) => (S t1 · · · tn) where
a == b = case (a, b) of
(C1a1 · · · ak1 , C1b1 · · · bk1)

→ true && a1.== b1 && · · · && ak1.== bk1
· · ·
(Cma1 · · · akm , Cmb1 · · · bkm)

→ true && a1.== b1 && · · · && akm.== bkm
→ false

hashCode x = · · ·

The expression a == b evaluates to true if both a and b were constrcuted with the same
data constructor and their corresponding subcomponents are pairwise equal.

Derived Instances for Ord

The Ord class is used for totally ordered datatypes. It is a subclass of Eq and inherits the
operations == and !=. It defines one new operation <=> that must be implemented by all
instances, and operations <, <=, >, >=, max and min in terms of <=>.

The compare function <=> 1 compares two values and returns a result of type Ordering,
which is defined as 2

data Ordering = Lt | Eq | Gt

Instances of Ord can be derived for all algebraic data types that are either already instances
of Eq or have an implementation for hashCode.

The translation shown here does not handle the case of the trivial product type. Such a
type will have an implementation of <=> that always returns Ordering.Eq.

For product types, the generated expression compares the components ai, bi from 1 to
k−1; the first result ri that does not signify equality is the result of the overall comparison.
Otherwise, if all component pairs up to k − 1 compare equal, the result is the ordering of
the last component pair, ak.<=> bk.

1The alias compare is provided for Haskell compatibility.
2Aliases LT, EQ and GT are provided for Haskell compatibility.
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Translation: Let P be a n-ary (n ≥ 0) type constructor for a product type with
k-ary (k ≥ 1) data constructor C:

data P u1 · · · un = C ct1 · · · ctk
Then

derive Ord (P t1 · · · tn)
is equivalent to:

instance Ord (Ord t1, · · ·, Ord tn) => (P t1 · · · tn) where
(Ca1 · · · ak) <=> (Cb1 · · · bk) = case a1.<=> b1 of
Eq →
· · ·
case ak−1.<=> ak−1 of
Eq → ak.<=> bk
rk−1 → rk−1

· · ·
r1 → r1

Derived instances for sum types make use of the Prelude function

constructor :: any → Int

which returns the index of the constructor for algebraic data types.3

The code for sum types first sorts out the cases where the constructors are not the same;
the result in such a case is the ordering of the constructors. The remaining m cases
compare nullary constructors equal to themselves, values with unary constructors compare
just like the components compare and values with constructors of higher arity compare
like the tuples constructed from their components would compare when ki-ary tuples had
a derived instance of Ord.

3The constructors are numbered starting from 0 in the order they appear in the data declaration.
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Translation: Let S be a n-ary (n ≥ 0) type constructor for a sum type with m
(m ≥ 2) data constructors C1, · · · , Cm and arities k1, · · · , km:

data S u1 · · · un = C1 ct11 · · · ctk1 | · · · | Cm ctm1 · · · ctkm
Then

derive Ord (S t1 · · · tn)
is equivalent to:

instance Ord (Ord t1, · · ·, Ord tn) => (S t1 · · · tn) where
a <=> b = case (constructor a)<=> (constructor b) of
Eq → case (a, b) of
alt1
· · ·
altm

r0 → r0

where each of the alternatives alti has a form that depends on the arity of the
constructor Ci:

(Ci, Ci)→ Eq for nullary Ci

(Cia1, Cib1)→ a1.<=> b1 for unary Ci

(Cia1 · · · aki , Cib1 · · · bki)→ for Ci with arity ki ≥ 2
(a1, · · · , aki).<=> (b1, · · · , bki)

9.2 Derived Instances for Enum

The Enum class can be derived for algebraic datatypes that have only nullary construc-
tors. It provides conversion from and to Int values, successor and predecessor functions
and the operations enumFrom, enumFromTo, enumFromThen and enumFromThenTo to
construct arithmetic sequences. Enum is a subclass of Ord and hence of Eq.

In addition to the above, derived instances also provide the operation hashCode required
for instances of Eq. In derived instances, hashCode is always the same as ord and not
shown in the translations.

In all derived instances, the following holds for the successor and predecessor functions:

Translation:

succ e = from (ord e + 1)
pred e = from (ord e - 1)

This implies that the successor of the last enumeration value as well as the predecessor
of the first enumeration value are undefined.

Difference to Haskell 98/2010: The functions toEnum and fromEnum are know
as from and ord in Frege. Aliases are provided for compatibility.
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A trivial type can be an instance of Enum.

Translation: Let T be a trivial type:

data T = C
Then

derive Enum T
is equivalent to:

instance Enum T where
ord C = 0; from 0 = C; succ = undefined; pred = undefined;
enumFrom = [C]; enumFromTo = [C];
enumFromThen = [C]; enumFromThenTo = [C];

Note that predecessor and successor are undefined, and all arithmetic sequences result in
a list with just one element, C.

Product types with arity k > 0 cannot be derived instances of Enum. It remains to show
the translation for those sum types that can be instances of Enum.

Translation: Let S be a sum type with m (m ≥ 2) nullary constructors C1, · · ·,
Cm−1:

data S = C1| · · · |Cm

Then
derive Enum S

is equivalent to:
instance Enum S where

ord e = case e of
C1 → 0
· · ·
Cm → m− 1

from i = case i of
0 → C1

· · ·
m− 1 → Cm

enumFromTo a b = if a ≤ b then a:enumFromTo (succ a) b else []

enumFrom a = enumFromTo a Cm

enumFromThen a b = enumFromThenTo a b (if a ≤ b then Cm else C1)
enumFromThenTo a b c = map from

(Int.enumFromThenTo (ord a) (ord b) (ord c))

Note that the construct m − 1 will be substituted by the appropriate integer constant.
The application (S.from i) is undefined for (i < 0) or (i ≥ m). For all Ci it is the case
that S.from Ci.ord == Ci
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9.3 Derived instances for Bounded

This type class defines two per type constants minBound and maxBound and can be
derived for enumeration types.

Translation: Let S be a sum type with m (m ≥ 2) nullary constructors:

data S = C1| · · · |Cm

Then
derive Bounded S

is equivalent to:
instance Bounded S where

minBound = C1

maxBound = Cm

9.4 Derived instances for Show

The type class Show is for types whose values can be represented as character strings. It
can be derived for any algebraic data type.

Translation: Let S be a n-ary (n ≥ 0) type constructor for a type with m (m ≥ 1)
data constructors C1, · · · , Cm and arities k1, · · · , km:

data S u1 · · · un = C1 ct11 · · · ctk1 | · · · | Cm ctm1 · · · ctkm
Then

derive Show (S t1 · · · tn)
is equivalent to:

instance Show (Show t1, · · ·, Show tn) => (S t1 · · · tn) where
show v = case v of

C1a1 · · · ak1 → "Ci" ++ " "

++ a1.showsub ++ · · · " " ++ ak .showsub

· · ·
Cma1 · · · akm → · · ·

showsub Ci = "Ci" for each i where ki = 0
showsub Cia1 · · · aki = for each i where ki > 0

"(" ++ show ( Cia1 · · · aki) ++ ")"

The derived show functions create a textual representation of a value that will be syntacti-
cally reminiscent of a constructor application if the Show instances of the subcomponents
behave likewise. The showsub function shows the value enclosed in parenthesis if it is
more complex than just a nullary constructor.

The translation above is equally valid for product and sum types. Types that enjoy
special syntactic support (list types, tuples, and the unit type) have also special Show
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instances whose translation is omitted for brevity. Suffice it to say that these instances
will reproduce the familiar textual representations, i.e. the expression show (1,2) will
produce "(1, 2)" and not "(,) 1 2".
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